spi_flash_sfud.c 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2016-09-28     armink       first version.
 */

#include <stdint.h>
#include <string.h>
#include <rtdevice.h>
#include "spi_flash.h"
#include "spi_flash_sfud.h"

#ifdef RT_USING_SFUD

#ifndef RT_SFUD_DEFAULT_SPI_CFG

#ifndef RT_SFUD_SPI_MAX_HZ
#define RT_SFUD_SPI_MAX_HZ 50000000
#endif

/* read the JEDEC SFDP command must run at 50 MHz or less */
#define RT_SFUD_DEFAULT_SPI_CFG                  \
{                                                \
    .mode = RT_SPI_MODE_0 | RT_SPI_MSB,          \
    .data_width = 8,                             \
    .max_hz = RT_SFUD_SPI_MAX_HZ,                \
}
#endif /* RT_SFUD_DEFAULT_SPI_CFG */

#ifdef SFUD_USING_QSPI
#define RT_SFUD_DEFAULT_QSPI_CFG                 \
{                                                \
    RT_SFUD_DEFAULT_SPI_CFG,                     \
    .medium_size = 0x800000,                     \
    .ddr_mode = 0,                               \
    .qspi_dl_width = 4,                          \
}
#endif /* SFUD_USING_QSPI */

static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
    RT_ASSERT(dev);

    switch (cmd) {
    case RT_DEVICE_CTRL_BLK_GETGEOME: {
        struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
        struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);

        if (rtt_dev == RT_NULL || geometry == RT_NULL) {
            return -RT_ERROR;
        }

        geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
        geometry->sector_count = rtt_dev->geometry.sector_count;
        geometry->block_size = rtt_dev->geometry.block_size;
        break;
    }
    case RT_DEVICE_CTRL_BLK_ERASE: {
        rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
        struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
        sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
        rt_size_t phy_size;

        if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
            return -RT_ERROR;
        }

        if (end_addr == start_addr) {
            end_addr ++;
        }

        phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
        phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;

        if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
            return -RT_ERROR;
        }
        break;
    }
    }

    return RT_EOK;
}


static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
    sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);

    RT_ASSERT(dev);
    RT_ASSERT(rtt_dev);
    RT_ASSERT(sfud_dev);
    /* change the block device's logic address to physical address */
    rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
    rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;

    if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
        return 0;
    } else {
        return size;
    }
}

static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
    sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);

    RT_ASSERT(dev);
    RT_ASSERT(rtt_dev);
    RT_ASSERT(sfud_dev);
    /* change the block device's logic address to physical address */
    rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
    rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;

    if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
        return 0;
    } else {
        return size;
    }
}

/**
 * SPI write data then read data
 */
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
        size_t read_size) {
    sfud_err result = SFUD_SUCCESS;
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    RT_ASSERT(spi);
    RT_ASSERT(sfud_dev);
    RT_ASSERT(rtt_dev);
#ifdef SFUD_USING_QSPI
    struct rt_qspi_device *qspi_dev = RT_NULL;
#endif
    if (write_size) {
        RT_ASSERT(write_buf);
    }
    if (read_size) {
        RT_ASSERT(read_buf);
    }
#ifdef SFUD_USING_QSPI
    if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
        qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
        if (write_size && read_size) {
            if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
                result = SFUD_ERR_TIMEOUT;
            }
        } else if (write_size) {
            if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
                result = SFUD_ERR_TIMEOUT;
            }
        }
    }
    else
#endif
    {
        if (write_size && read_size) {
            if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
                result = SFUD_ERR_TIMEOUT;
            }
        } else if (write_size) {
            if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
                result = SFUD_ERR_TIMEOUT;
            }
        } else {
            if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
                result = SFUD_ERR_TIMEOUT;
            }
        }
    }

    return result;
}

#ifdef SFUD_USING_QSPI
/**
 * QSPI fast read data
 */
static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
    struct rt_qspi_message message;
    sfud_err result = SFUD_SUCCESS;

    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
    struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);

    RT_ASSERT(spi);
    RT_ASSERT(sfud_dev);
    RT_ASSERT(rtt_dev);
    RT_ASSERT(qspi_dev);

    /* set message struct */
    message.instruction.content = qspi_read_cmd_format->instruction;
    message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;

    message.address.content = addr;
    message.address.size = qspi_read_cmd_format->address_size;
    message.address.qspi_lines = qspi_read_cmd_format->address_lines;

    message.alternate_bytes.content = 0;
    message.alternate_bytes.size = 0;
    message.alternate_bytes.qspi_lines = 0;

    message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;

    message.parent.send_buf = RT_NULL;
    message.parent.recv_buf = read_buf;
    message.parent.length = read_size;
    message.parent.cs_release = 1;
    message.parent.cs_take = 1;
    message.qspi_data_lines = qspi_read_cmd_format->data_lines;

    if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
        result = SFUD_ERR_TIMEOUT;
    }

    return result;
}
#endif

static void spi_lock(const sfud_spi *spi) {
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    RT_ASSERT(spi);
    RT_ASSERT(sfud_dev);
    RT_ASSERT(rtt_dev);

    rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
}

static void spi_unlock(const sfud_spi *spi) {
    sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
    struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);

    RT_ASSERT(spi);
    RT_ASSERT(sfud_dev);
    RT_ASSERT(rtt_dev);

    rt_mutex_release(&(rtt_dev->lock));
}

static void retry_delay_100us(void) {
    /* 100 microsecond delay */
    rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
}

sfud_err sfud_spi_port_init(sfud_flash *flash) {
    sfud_err result = SFUD_SUCCESS;

    RT_ASSERT(flash);

    /* port SPI device interface */
    flash->spi.wr = spi_write_read;
#ifdef SFUD_USING_QSPI
    flash->spi.qspi_read = qspi_read;
#endif
    flash->spi.lock = spi_lock;
    flash->spi.unlock = spi_unlock;
    flash->spi.user_data = flash;
    if (RT_TICK_PER_SECOND < 1000) {
        LOG_W("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.", RT_TICK_PER_SECOND);
    }
    /* 100 microsecond delay */
    flash->retry.delay = retry_delay_100us;
    /* 60 seconds timeout */
    flash->retry.times = 60 * 10000;

    return result;
}

#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops flash_device_ops =
{
    RT_NULL,
    RT_NULL,
    RT_NULL,
    rt_sfud_read,
    rt_sfud_write,
    rt_sfud_control
};
#endif

/**
 * Probe SPI flash by SFUD (Serial Flash Universal Driver) driver library and though SPI device by specified configuration.
 *
 * @param spi_flash_dev_name the name which will create SPI flash device
 * @param spi_dev_name using SPI device name
 * @param spi_cfg SPI device configuration
 * @param qspi_cfg QSPI device configuration
 *
 * @return probed SPI flash device, probe failed will return RT_NULL
 */
rt_spi_flash_device_t rt_sfud_flash_probe_ex(const char *spi_flash_dev_name, const char *spi_dev_name,
        struct rt_spi_configuration *spi_cfg, struct rt_qspi_configuration *qspi_cfg)
{
    rt_spi_flash_device_t rtt_dev = RT_NULL;
    sfud_flash *sfud_dev = RT_NULL;
    char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
    extern sfud_err sfud_device_init(sfud_flash *flash);
#ifdef SFUD_USING_QSPI
    struct rt_qspi_device *qspi_dev = RT_NULL;
#endif

    RT_ASSERT(spi_flash_dev_name);
    RT_ASSERT(spi_dev_name);

    rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
    sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
    spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
    spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);

    if (rtt_dev) {
        rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
        /* initialize lock */
        rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_PRIO);
    }

    if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
        rt_memset(sfud_dev, 0, sizeof(sfud_flash));
        rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
        rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
        /* make string end sign */
        spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
        spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
        /* SPI configure */
        {
            /* RT-Thread SPI device initialize */
            rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
            if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
                LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
                goto error;
            }
            sfud_dev->spi.name = spi_dev_name_bak;

#ifdef SFUD_USING_QSPI
            /* set the qspi line number and configure the QSPI bus */
            if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
                qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
                qspi_cfg->qspi_dl_width = qspi_dev->config.qspi_dl_width;
                rt_qspi_configure(qspi_dev, qspi_cfg);
            }
            else
#endif
                rt_spi_configure(rtt_dev->rt_spi_device, spi_cfg);
        }
        /* SFUD flash device initialize */
        {
            sfud_dev->name = spi_flash_dev_name_bak;
            /* accessed each other */
            rtt_dev->user_data = sfud_dev;
            rtt_dev->rt_spi_device->user_data = rtt_dev;
            rtt_dev->flash_device.user_data = rtt_dev;
            sfud_dev->user_data = rtt_dev;
            /* initialize SFUD device */
            if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
                LOG_E("ERROR: SPI flash probe failed by SPI device %s.", spi_dev_name);
                goto error;
            }
            /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
            rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
            rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
            rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
#ifdef SFUD_USING_QSPI
            /* reconfigure the QSPI bus for medium size */
            if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
                qspi_cfg->medium_size = sfud_dev->chip.capacity;
                rt_qspi_configure(qspi_dev, qspi_cfg);
                if(qspi_dev->enter_qspi_mode != RT_NULL)
                    qspi_dev->enter_qspi_mode(qspi_dev);

                /* set data lines width */
                sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
            }
#endif /* SFUD_USING_QSPI */
        }

        /* register device */
        rtt_dev->flash_device.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
        rtt_dev->flash_device.ops  = &flash_device_ops;
#else
        rtt_dev->flash_device.init = RT_NULL;
        rtt_dev->flash_device.open = RT_NULL;
        rtt_dev->flash_device.close = RT_NULL;
        rtt_dev->flash_device.read = rt_sfud_read;
        rtt_dev->flash_device.write = rt_sfud_write;
        rtt_dev->flash_device.control = rt_sfud_control;
#endif

        rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);

        LOG_I("Probe SPI flash %s by SPI device %s success.",spi_flash_dev_name, spi_dev_name);
        return rtt_dev;
    } else {
        LOG_E("ERROR: Low memory.");
        goto error;
    }

error:

    if (rtt_dev) {
        rt_mutex_detach(&(rtt_dev->lock));
    }
    /* may be one of objects memory was malloc success, so need free all */
    rt_free(rtt_dev);
    rt_free(sfud_dev);
    rt_free(spi_flash_dev_name_bak);
    rt_free(spi_dev_name_bak);

    return RT_NULL;
}

/**
 * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
 *
 * @param spi_flash_dev_name the name which will create SPI flash device
 * @param spi_dev_name using SPI device name
 *
 * @return probed SPI flash device, probe failed will return RT_NULL
 */
rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name)
{
    struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
#ifndef SFUD_USING_QSPI
    return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, RT_NULL);
#else
    struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;

    return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, &qspi_cfg);
#endif
}

/**
 * Delete SPI flash device
 *
 * @param spi_flash_dev SPI flash device
 *
 * @return the operation status, RT_EOK on successful
 */
rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
    sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);

    RT_ASSERT(spi_flash_dev);
    RT_ASSERT(sfud_flash_dev);

    rt_device_unregister(&(spi_flash_dev->flash_device));

    rt_mutex_detach(&(spi_flash_dev->lock));

    rt_free(sfud_flash_dev->spi.name);
    rt_free(sfud_flash_dev->name);
    rt_free(sfud_flash_dev);
    rt_free(spi_flash_dev);

    return RT_EOK;
}

sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
{
    rt_spi_flash_device_t  rtt_dev       = RT_NULL;
    struct rt_spi_device  *rt_spi_device = RT_NULL;
    sfud_flash_t           sfud_dev      = RT_NULL;

    rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
    if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
        LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
        goto __error;
    }

    rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
    if (rtt_dev && rtt_dev->user_data) {
        sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
        return sfud_dev;
    } else {
        LOG_E("ERROR: SFUD flash device not found!");
        goto __error;
    }

__error:
    return RT_NULL;
}

sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
{
    rt_spi_flash_device_t  rtt_dev       = RT_NULL;
    sfud_flash_t           sfud_dev      = RT_NULL;

    rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
    if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
        LOG_E("ERROR: Flash device %s not found!", flash_dev_name);
        goto __error;
    }

    if (rtt_dev->user_data) {
        sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
        return sfud_dev;
    } else {
        LOG_E("ERROR: SFUD flash device not found!");
        goto __error;
    }

__error:
    return RT_NULL;
}

#if defined(RT_USING_FINSH)

#include <finsh.h>

static void sf(uint8_t argc, char **argv) {

#define __is_print(ch)                ((unsigned int)((ch) - ' ') < 127u - ' ')
#define HEXDUMP_WIDTH                 16
#define CMD_PROBE_INDEX               0
#define CMD_READ_INDEX                1
#define CMD_WRITE_INDEX               2
#define CMD_ERASE_INDEX               3
#define CMD_RW_STATUS_INDEX           4
#define CMD_BENCH_INDEX               5

    sfud_err result = SFUD_SUCCESS;
    static const sfud_flash *sfud_dev = NULL;
    static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
    size_t i = 0, j = 0;

    const char* sf_help_info[] = {
            [CMD_PROBE_INDEX]     = "sf probe [spi_device]           - probe and init SPI flash by given 'spi_device'",
            [CMD_READ_INDEX]      = "sf read addr size               - read 'size' bytes starting at 'addr'",
            [CMD_WRITE_INDEX]     = "sf write addr data1 ... dataN   - write some bytes 'data' to flash starting at 'addr'",
            [CMD_ERASE_INDEX]     = "sf erase addr size              - erase 'size' bytes starting at 'addr'",
            [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
            [CMD_BENCH_INDEX]     = "sf bench                        - full chip benchmark. DANGER: It will erase full chip!",
    };

    if (argc < 2) {
        rt_kprintf("Usage:\n");
        for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
            rt_kprintf("%s\n", sf_help_info[i]);
        }
        rt_kprintf("\n");
    } else {
        const char *operator = argv[1];
        uint32_t addr, size;

        if (!strcmp(operator, "probe")) {
            if (argc < 3) {
                rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
            } else {
                char *spi_dev_name = argv[2];
                rtt_dev_bak = rtt_dev;

                /* delete the old SPI flash device */
                if(rtt_dev_bak) {
                    rt_sfud_flash_delete(rtt_dev_bak);
                }

                rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
                if (!rtt_dev) {
                    return;
                }

                sfud_dev = (sfud_flash_t)rtt_dev->user_data;
                if (sfud_dev->chip.capacity < 1024 * 1024) {
                    rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
                } else {
                    rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
                            sfud_dev->name);
                }
            }
        } else {
            if (!sfud_dev) {
                rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
                return;
            }
            if (!rt_strcmp(operator, "read")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
                    return;
                } else {
                    addr = strtol(argv[2], NULL, 0);
                    size = strtol(argv[3], NULL, 0);
                    uint8_t *data = rt_malloc(size);
                    if (data) {
                        result = sfud_read(sfud_dev, addr, size, data);
                        if (result == SFUD_SUCCESS) {
                            rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
                                    sfud_dev->name, addr, size);
                            rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
                            for (i = 0; i < size; i += HEXDUMP_WIDTH)
                            {
                                rt_kprintf("[%08X] ", addr + i);
                                /* dump hex */
                                for (j = 0; j < HEXDUMP_WIDTH; j++) {
                                    if (i + j < size) {
                                        rt_kprintf("%02X ", data[i + j]);
                                    } else {
                                        rt_kprintf("   ");
                                    }
                                }
                                /* dump char for hex */
                                for (j = 0; j < HEXDUMP_WIDTH; j++) {
                                    if (i + j < size) {
                                        rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
                                    }
                                }
                                rt_kprintf("\n");
                            }
                            rt_kprintf("\n");
                        }
                        rt_free(data);
                    } else {
                        rt_kprintf("Low memory!\n");
                    }
                }
            } else if (!rt_strcmp(operator, "write")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
                    return;
                } else {
                    addr = strtol(argv[2], NULL, 0);
                    size = argc - 3;
                    uint8_t *data = rt_malloc(size);
                    if (data) {
                        for (i = 0; i < size; i++) {
                            data[i] = strtol(argv[3 + i], NULL, 0);
                        }
                        result = sfud_write(sfud_dev, addr, size, data);
                        if (result == SFUD_SUCCESS) {
                            rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
                                    sfud_dev->name, addr, size);
                            rt_kprintf("Write data: ");
                            for (i = 0; i < size; i++) {
                                rt_kprintf("%d ", data[i]);
                            }
                            rt_kprintf(".\n");
                        }
                        rt_free(data);
                    } else {
                        rt_kprintf("Low memory!\n");
                    }
                }
            } else if (!rt_strcmp(operator, "erase")) {
                if (argc < 4) {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
                    return;
                } else {
                    addr = strtol(argv[2], NULL, 0);
                    size = strtol(argv[3], NULL, 0);
                    result = sfud_erase(sfud_dev, addr, size);
                    if (result == SFUD_SUCCESS) {
                        rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
                                addr, size);
                    }
                }
            } else if (!rt_strcmp(operator, "status")) {
                if (argc < 3) {
                    uint8_t status;
                    result = sfud_read_status(sfud_dev, &status);
                    if (result == SFUD_SUCCESS) {
                        rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
                    }
                } else if (argc == 4) {
                    bool is_volatile = strtol(argv[2], NULL, 0);
                    uint8_t status = strtol(argv[3], NULL, 0);
                    result = sfud_write_status(sfud_dev, is_volatile, status);
                    if (result == SFUD_SUCCESS) {
                        rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
                    }
                } else {
                    rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
                    return;
                }
            } else if (!rt_strcmp(operator, "bench")) {
                if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
                    rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
                    return;
                }
                /* full chip benchmark test */
                addr = 0;
                size = sfud_dev->chip.capacity;
                uint32_t start_time, time_cast;
                size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE, cur_op_size;
                uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);

                if (write_data && read_data) {
                    for (i = 0; i < write_size; i ++) {
                        write_data[i] = i & 0xFF;
                    }
                    /* benchmark testing */
                    rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
                    start_time = rt_tick_get();
                    result = sfud_erase(sfud_dev, addr, size);
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
                    }
                    /* write test */
                    rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
                    start_time = rt_tick_get();
                    for (i = 0; i < size; i += write_size) {
                        if (i + write_size <= size) {
                            cur_op_size = write_size;
                        } else {
                            cur_op_size = size - i;
                        }
                        result = sfud_write(sfud_dev, addr + i, cur_op_size, write_data);
                        if (result != SFUD_SUCCESS) {
                            rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
                            break;
                        }
                    }
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
                    }
                    /* read test */
                    rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
                    start_time = rt_tick_get();
                    for (i = 0; i < size; i += read_size) {
                        if (i + read_size <= size) {
                            cur_op_size = read_size;
                        } else {
                            cur_op_size = size - i;
                        }
                        result = sfud_read(sfud_dev, addr + i, cur_op_size, read_data);
                        /* data check */
                        if (memcmp(write_data, read_data, cur_op_size))
                        {
                            rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
                            result = SFUD_ERR_READ;
                        }

                        if (result != SFUD_SUCCESS) {
                            rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
                            break;
                        }
                    }
                    if (result == SFUD_SUCCESS) {
                        time_cast = rt_tick_get() - start_time;
                        rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
                                time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
                    } else {
                        rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
                    }
                } else {
                    rt_kprintf("Low memory!\n");
                }
                rt_free(write_data);
                rt_free(read_data);
            } else {
                rt_kprintf("Usage:\n");
                for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
                    rt_kprintf("%s\n", sf_help_info[i]);
                }
                rt_kprintf("\n");
                return;
            }
            if (result != SFUD_SUCCESS) {
                rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
            }
        }
    }
}
MSH_CMD_EXPORT(sf, SPI Flash operate.);
#endif /* defined(RT_USING_FINSH) */

#endif /* RT_USING_SFUD */