mutex 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
#pragma once

#if __cplusplus < 201103L
#error "C++ version lower than C++11"
#endif

//#if defined(RT_USING_PTHREADS)

#include <pthread.h>

#include <system_error>
#include <chrono>
#include <utility>
#include <functional>

#include "__utils.h"

#define rt_cpp_mutex_t  pthread_mutex_t

namespace std 
{
    // Base class on which to build std::mutex and std::timed_mutex
    class __mutex_base
    {
        protected:
            typedef rt_cpp_mutex_t  __native_type;

            __native_type _m_mutex = PTHREAD_MUTEX_INITIALIZER;

            constexpr __mutex_base() noexcept = default;
            __mutex_base(const __mutex_base&) = delete;
            __mutex_base& operator=(const __mutex_base&) = delete;
    };

    
    class mutex : private __mutex_base
    {
        public:
            constexpr mutex() = default;
            ~mutex() = default;

            mutex(const mutex&) = delete;
            mutex& operator=(const mutex&) = delete;

            void lock()
            {
                int err  = pthread_mutex_lock(&_m_mutex);

                if (err)
                {
                    throw_system_error(err, "mutex:lock failed.");
                }
            }

            bool try_lock() noexcept
            {
                return !pthread_mutex_trylock(&_m_mutex);
            }

            void unlock() noexcept
            {
                pthread_mutex_unlock(&_m_mutex);
            }

            typedef __native_type* native_handle_type;

            native_handle_type native_handle() 
            {
                return &_m_mutex;
            };

    };

    inline int __rt_cpp_recursive_mutex_init(rt_cpp_mutex_t* m)
    {
        pthread_mutexattr_t attr;
        int res;

        res = pthread_mutexattr_init(&attr);
        if (res)
            return res;
        res = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
        if (res)
            goto attr_cleanup;
        res = pthread_mutex_init(m, &attr);

        attr_cleanup:
            int err = pthread_mutexattr_destroy(&attr);
            return res ? res : err;
    }

    class __recursive_mutex_base
    {
        protected:
            typedef rt_cpp_mutex_t __native_type;

            __native_type _m_recursive_mutex;

            __recursive_mutex_base(const __recursive_mutex_base&) = delete;
            __recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;

            __recursive_mutex_base()
            {
                int err = __rt_cpp_recursive_mutex_init(&_m_recursive_mutex);
                if (err)
                    throw_system_error(err, "Recursive mutex failed to construct");
            }

            ~__recursive_mutex_base()
            {
                pthread_mutex_destroy(&_m_recursive_mutex);
            }
    };

    class recursive_mutex : private __recursive_mutex_base
    {
        public:
            typedef __native_type* native_handle_type; 
            recursive_mutex() = default;
            ~recursive_mutex() = default;

            recursive_mutex(const recursive_mutex&) = delete;
            recursive_mutex& operator=(const recursive_mutex&) = delete;
            void lock()
            {
                int err = pthread_mutex_lock(&_m_recursive_mutex);

                if (err)
                    throw_system_error(err, "recursive_mutex::lock failed");
            }

            bool try_lock() noexcept
            {
                return !pthread_mutex_trylock(&_m_recursive_mutex);
            }

            void unlock() noexcept
            {
                pthread_mutex_unlock(&_m_recursive_mutex);
            }

            native_handle_type native_handle()
            { return &_m_recursive_mutex; }
    };

#ifdef RT_PTHREAD_TIMED_MUTEX

    class timed_mutex;

    class recursive_timed_mutex;

#endif // RT_PTHREAD_TIMED_MUTEX

    
    struct defer_lock_t {};
    struct try_to_lock_t {};
    struct adopt_lock_t {}; // take ownership of a locked mtuex

    constexpr defer_lock_t defer_lock { };
    constexpr try_to_lock_t try_to_lock { };
    constexpr adopt_lock_t adopt_lock { };

    template <class Mutex> 
    class lock_guard
    {
        public:
            typedef Mutex mutex_type;

            explicit lock_guard(mutex_type& m) : pm(m) { pm.lock(); }
            lock_guard(mutex_type& m, adopt_lock_t) noexcept : pm(m)
            { }
            ~lock_guard() 
            { pm.unlock(); }

            lock_guard(lock_guard const&) = delete;
            lock_guard& operator=(lock_guard const&) = delete;

        private:
            mutex_type& pm;

    };

    template <class Mutex>
    class unique_lock
    {
        public:
            typedef Mutex mutex_type;

            unique_lock() noexcept : pm(nullptr), owns(false) { }
            
            explicit unique_lock(mutex_type& m) 
                : pm(std::addressof(m)), owns(false)
            {
                lock();
                owns = true;
            }

            unique_lock(mutex_type& m, defer_lock_t) noexcept 
                : pm(std::addressof(m)), owns(false)
            { }

            unique_lock(mutex_type& m, try_to_lock_t) noexcept
                : pm(std::addressof(m)), owns(pm->try_lock())
            { }

            unique_lock(mutex_type& m, adopt_lock_t) noexcept
                : pm(std::addressof(m)), owns(true)
            { }

            // any lock-involving timed mutex API is currently only for custom implementations
            // the standard ones are not available
            template <class Clock, class Duration>
            unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time) noexcept
                : pm(std::addressof(m)), owns(pm->try_lock_until(abs_time))
            { }

            template <class Rep, class Period>
            unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time) noexcept
                : pm(std::addressof(m)), owns(pm->try_lock_for(rel_time))
            { }
            
            ~unique_lock()
            {
                if (owns)
                    unlock();
            }
            
            unique_lock(unique_lock const&) = delete;
            unique_lock& operator=(unique_lock const&) = delete;

            unique_lock(unique_lock&& u) noexcept
                : pm(u.pm), owns(u.owns)
            {
                u.pm = nullptr;
                u.owns = false;
            }

            unique_lock& operator=(unique_lock&& u) noexcept                
            {
                if (owns)
                    unlock();
                
                unique_lock(std::move(u)).swap(*this);

                u.pm = nullptr;
                u.owns = false;

                return *this;
            }

            void lock()
            {
                if (!pm)
                    throw_system_error(int(errc::operation_not_permitted), 
                                        "unique_lock::lock: references null mutex");
                else if (owns)
                    throw_system_error(int(errc::resource_deadlock_would_occur),
                                        "unique_lock::lock: already locked" );
                else {
                    pm->lock();
                    owns = true;
                }
            }

            bool try_lock()
            {
                if (!pm)
                    throw_system_error(int(errc::operation_not_permitted), 
                                        "unique_lock::try_lock: references null mutex");
                else if (owns)
                    throw_system_error(int(errc::resource_deadlock_would_occur),
                                        "unique_lock::try_lock: already locked" );
                else {
                    owns = pm->try_lock();
                }
                return owns;
            }

            template <class Rep, class Period>
            bool try_lock_for(const chrono::duration<Rep, Period>& rel_time)
            {
                if (!pm)
                    throw_system_error(int(errc::operation_not_permitted),
                                        "unique_lock::try_lock_for: references null mutex");
                else if (owns)
                    throw_system_error(int(errc::resource_deadlock_would_occur),
                                        "unique_lock::try_lock_for: already locked");
                else {
                    owns = pm->try_lock_for(rel_time);
                }
                return owns;
            }
            
            template <class Clock, class Duration>
            bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time)
            {
                if (!pm)
                    throw_system_error(int(errc::operation_not_permitted),
                                        "unique_lock::try_lock_until: references null mutex");
                else if (owns)
                    throw_system_error(int(errc::resource_deadlock_would_occur),
                                        "unique_lock::try_lock_until: already locked");
                else {
                    owns = pm->try_lock_until(abs_time);
                }
                return owns;
            }
            
            void unlock()
            {
                if (!owns)
                    throw_system_error(int(errc::operation_not_permitted), 
                                        "unique_lock::unlock: not locked");
                else {
                    pm->unlock();
                    owns = false;
                }
            }

            void swap(unique_lock& u) noexcept
            {
                std::swap(pm, u.pm);
                std::swap(owns, u.owns);
            }

            mutex_type *release() noexcept
            {
                mutex_type* ret_mutex = pm;
                pm = nullptr;
                owns = false;
                
                return ret_mutex;
            }

            bool owns_lock() const noexcept
            { return owns; }

            explicit operator bool() const noexcept
            { return owns_lock(); }

            mutex_type* mutex() const noexcept
            { return pm; }
            
            
        private:
            mutex_type *pm; 
            bool owns;
    };

    template <class Mutex>
    void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y)
    {
        x.swap(y);
    }

    template <class L0, class L1>
    int try_lock(L0& l0, L1& l1)
    {
        unique_lock<L0> u0(l0, try_to_lock); // try to lock the first Lockable
        // using unique_lock since we don't want to unlock l0 manually if l1 fails to lock
        if (u0.owns_lock())
        {
            if (l1.try_lock()) // lock the second one
            {
                u0.release(); // do not let RAII of a unique_lock unlock l0
                return -1;
            }
            else
                return 1; 
        }
        return 0;
    } 

    
    template <class L0, class L1, class L2, class... L3>
    int try_lock(L0& l0, L1& l1, L2& l2, L3&... l3)
    {
        int r = 0;
        unique_lock<L0> u0(l0, try_to_lock);
        // automatically unlock is done through RAII of unique_lock
        if (u0.owns_lock())
        {
            r = try_lock(l1, l2, l3...);
            if (r == -1)
                u0.release();
            else
                ++r;
        }
        return r;
    }

    template <class L0, class L1, class L2, class ...L3>
    void
    __lock_first(int i, L0& l0, L1& l1, L2& l2, L3&... l3)
    {
        while (true)
        {
            // we first lock the one that is the most difficult to lock 
            switch (i) 
            {
            case 0:
                {
                    unique_lock<L0> u0(l0);
                    i = try_lock(l1, l2, l3...);
                    if (i == -1)
                    {
                        u0.release();
                        return;
                    }
                }
                ++i;
                sched_yield();
                break;
            case 1:
                {
                    unique_lock<L1> u1(l1);
                    i = try_lock(l2, l3..., l0);
                    if (i == -1)
                    {
                        u1.release();
                        return;
                    }
                }
                if (i == sizeof...(L3) + 1) // all except l0 are locked
                    i = 0;
                else
                    i += 2; // since i was two-based above
                sched_yield();
                break;
            default:
                __lock_first(i - 2, l2, l3..., l0, l1);
                return;
            }
        }
    }


    template <class L0, class L1>
    void lock(L0& l0, L1& l1)
    {
        while (true)
        {
            {
                unique_lock<L0> u0(l0);
                if (l1.try_lock())
                {
                    u0.release();
                    break;
                }
            }
            sched_yield();
            // wait and try the other way
            {
                unique_lock<L1> u1(l1);
                if (l0.try_lock())
                {
                    u1.release();
                    break;
                }
            }
            sched_yield();
        }
    }

    template <class L0, class L1, class... L2>
    void lock(L0& l0, L1& l1, L2&... l2)
    {
        __lock_first(0, l0, l1, l2...);
    }

    struct once_flag 
    {
        constexpr once_flag() noexcept = default;

        once_flag(const once_flag&) = delete;
        once_flag& operator=(const once_flag&) = delete;

        template <class Callable, class... Args>
        friend void call_once(once_flag& flag, Callable&& func, Args&&... args);

        private:
            pthread_once_t _m_once = PTHREAD_ONCE_INIT;
    };

    mutex& get_once_mutex();
    extern function<void()> once_functor;
    extern void set_once_functor_lock_ptr(unique_lock<mutex>*);

    extern "C" void once_proxy(); // passed into pthread_once

    template <class Callable, class... Args>
    void call_once(once_flag& flag, Callable&& func, Args&&... args)
    {
        // use a lock to ensure the call to the functor
        // is exclusive to only the first calling thread
        unique_lock<mutex> functor_lock(get_once_mutex()); 

        auto call_wrapper = std::bind(std::forward<Callable>(func), std::forward<Args>(args)...);
        once_functor = [&]() { call_wrapper(); };

        set_once_functor_lock_ptr(&functor_lock); // so as to unlock when actually calling

        int err = pthread_once(&flag._m_once, &once_proxy);

        if (functor_lock)
            set_once_functor_lock_ptr(nullptr);
        if (err)
            throw_system_error(err, "call_once failed");
    }
}

//#endif //(RT_USING_PTHREADS)