csi_instr.h
11.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file csi_instr.h
* @brief CSI Header File for instruct.
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#ifndef _CSI_INSTR_H_
#define _CSI_INSTR_H_
#define __CSI_GCC_OUT_REG(r) "=r" (r)
#define __CSI_GCC_USE_REG(r) "r" (r)
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__ALWAYS_INLINE void __NOP(void)
{
__ASM volatile("nop");
}
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
__ALWAYS_INLINE void __WFI(void)
{
__ASM volatile("wait");
}
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
*/
__ALWAYS_INLINE void __WAIT(void)
{
__ASM volatile("wait");
}
/**
\brief Doze For Interrupt
\details Doze For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
*/
__ALWAYS_INLINE void __DOZE(void)
{
__ASM volatile("doze");
}
/**
\brief Stop For Interrupt
\details Stop For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
*/
__ALWAYS_INLINE void __STOP(void)
{
__ASM volatile("stop");
}
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
__ALWAYS_INLINE void __ISB(void)
{
__ASM volatile("sync"::: "memory");
}
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__ALWAYS_INLINE void __DSB(void)
{
__ASM volatile("sync"::: "memory");
}
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__ALWAYS_INLINE void __DMB(void)
{
__ASM volatile("sync"::: "memory");
}
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__ALWAYS_INLINE uint32_t __REV(uint32_t value)
{
return __builtin_bswap32(value);
}
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__ALWAYS_INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
#if (__CK80X >= 2)
__ASM volatile("revh %0, %1" : __CSI_GCC_OUT_REG(result) : __CSI_GCC_USE_REG(value));
#else
result = ((value & 0xFF000000) >> 8) | ((value & 0x00FF0000) << 8) |
((value & 0x0000FF00) >> 8) | ((value & 0x000000FF) << 8);
#endif
return (result);
}
/**
\brief Reverse byte order in signed short value
\details Reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__ALWAYS_INLINE int32_t __REVSH(int32_t value)
{
return (short)(((value & 0xFF00) >> 8) | ((value & 0x00FF) << 8));
}
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
__ALWAYS_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << (32U - op2));
}
/**
\brief Breakpoint
\details Causes the processor to enter Debug state
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
*/
__ALWAYS_INLINE void __BKPT()
{
__ASM volatile("bkpt");
}
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__ALWAYS_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
#if (__CK80X >= 0x03U)
__ASM volatile("brev %0, %1" : "=r"(result) : "r"(value));
#else
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
#endif
return (result);
}
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __builtin_clz
/**
\details This function saturates a signed value.
\param [in] x Value to be saturated
\param [in] y Bit position to saturate to [1..32]
\return Saturated value.
*/
__ALWAYS_INLINE int32_t __SSAT(int32_t x, uint32_t y)
{
int32_t posMax, negMin;
uint32_t i;
posMax = 1;
for (i = 0; i < (y - 1); i++)
{
posMax = posMax * 2;
}
if (x > 0)
{
posMax = (posMax - 1);
if (x > posMax)
{
x = posMax;
}
// x &= (posMax * 2 + 1);
}
else
{
negMin = -posMax;
if (x < negMin)
{
x = negMin;
}
// x &= (posMax * 2 - 1);
}
return (x);
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__ALWAYS_INLINE uint32_t __USAT(uint32_t value, uint32_t sat)
{
uint32_t result;
if ((((0xFFFFFFFF >> sat) << sat) & value) != 0)
{
result = 0xFFFFFFFF >> (32 - sat);
}
else
{
result = value;
}
return (result);
}
/**
\brief Unsigned Saturate for internal use
\details Saturates an unsigned value, should not call directly.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__ALWAYS_INLINE uint32_t __IUSAT(uint32_t value, uint32_t sat)
{
uint32_t result;
if (value & 0x80000000) /* only overflow set bit-31 */
{
result = 0;
}
else if ((((0xFFFFFFFF >> sat) << sat) & value) != 0)
{
result = 0xFFFFFFFF >> (32 - sat);
}
else
{
result = value;
}
return (result);
}
/**
\brief Rotate Right with Extend
\details This function moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\note carry input will always 0.
\param [in] op1 Value to rotate
\return Rotated value
*/
__ALWAYS_INLINE uint32_t __RRX(uint32_t op1)
{
#if (__CK80X >= 2)
uint32_t res = 0;
__ASM volatile("bgeni t0, 31\n\t"
"lsri %0, 1\n\t"
"movt %1, t0\n\t"
"or %1, %1, %0\n\t"
: "=r"(op1), "=r"(res): "0"(op1), "1"(res): "t0");
return res;
#else
uint32_t res = 0;
__ASM volatile("movi r7, 0\n\t"
"bseti r7, 31\n\t"
"lsri %0, 1\n\t"
"bf 1f\n\t"
"mov %1, r7\n\t"
"1:\n\t"
"or %1, %1, %0\n\t"
: "=r"(op1), "=r"(res): "0"(op1), "1"(res): "r7");
return res;
#endif
}
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] addr Pointer to location
\return value of type uint8_t at (*ptr)
*/
__ALWAYS_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
{
uint32_t result;
//#warning "__LDRBT"
__ASM volatile("ldb %0, (%1, 0)" : "=r"(result) : "r"(addr));
return ((uint8_t) result); /* Add explicit type cast here */
}
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] addr Pointer to location
\return value of type uint16_t at (*ptr)
*/
__ALWAYS_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
{
uint32_t result;
//#warning "__LDRHT"
__ASM volatile("ldh %0, (%1, 0)" : "=r"(result) : "r"(addr));
return ((uint16_t) result); /* Add explicit type cast here */
}
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] addr Pointer to location
\return value of type uint32_t at (*ptr)
*/
__ALWAYS_INLINE uint32_t __LDRT(volatile uint32_t *addr)
{
uint32_t result;
//#warning "__LDRT"
__ASM volatile("ldw %0, (%1, 0)" : "=r"(result) : "r"(addr));
return (result);
}
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] addr Pointer to location
*/
__ALWAYS_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
{
//#warning "__STRBT"
__ASM volatile("stb %1, (%0, 0)" :: "r"(addr), "r"((uint32_t)value) : "memory");
}
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] addr Pointer to location
*/
__ALWAYS_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
{
//#warning "__STRHT"
__ASM volatile("sth %1, (%0, 0)" :: "r"(addr), "r"((uint32_t)value) : "memory");
}
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] addr Pointer to location
*/
__ALWAYS_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
{
//#warning "__STRT"
__ASM volatile("stw %1, (%0, 0)" :: "r"(addr), "r"(value) : "memory");
}
/*@}*/ /* end of group CSI_Core_InstructionInterface */
/* ########################## FPU functions #################################### */
/**
\brief get FPU type
\details returns the FPU type, always 0.
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__ALWAYS_INLINE uint32_t __get_FPUType(void)
{
uint32_t result;
__ASM volatile("mfcr %0, cr<13, 0>" : "=r"(result));
return 0;
}
#endif /* _CSI_INSTR_H_ */