kservice.c 44.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2006-03-16     Bernard      the first version
 * 2006-05-25     Bernard      rewrite vsprintf
 * 2006-08-10     Bernard      add rt_show_version
 * 2010-03-17     Bernard      remove rt_strlcpy function
 *                             fix gcc compiling issue.
 * 2010-04-15     Bernard      remove weak definition on ICCM16C compiler
 * 2012-07-18     Arda         add the alignment display for signed integer
 * 2012-11-23     Bernard      fix IAR compiler error.
 * 2012-12-22     Bernard      fix rt_kprintf issue, which found by Grissiom.
 * 2013-06-24     Bernard      remove rt_kprintf if RT_USING_CONSOLE is not defined.
 * 2013-09-24     aozima       make sure the device is in STREAM mode when used by rt_kprintf.
 * 2015-07-06     Bernard      Add rt_assert_handler routine.
 * 2021-02-28     Meco Man     add RT_KSERVICE_USING_STDLIB
 * 2021-12-20     Meco Man     implement rt_strcpy()
 * 2022-01-07     Gabriel      add __on_rt_assert_hook
 */

#include <rtthread.h>
#include <rthw.h>

#ifdef RT_USING_MODULE
#include <dlmodule.h>
#endif /* RT_USING_MODULE */

/* use precision */
#define RT_PRINTF_PRECISION

/**
 * @addtogroup KernelService
 */

/**@{*/

/* global errno in RT-Thread */
static volatile int __rt_errno;

#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
static rt_device_t _console_device = RT_NULL;
#endif

/**
 * This function gets the global errno for the current thread.
 *
 * @return errno
 */
rt_err_t rt_get_errno(void)
{
    rt_thread_t tid;

    if (rt_interrupt_get_nest() != 0)
    {
        /* it's in interrupt context */
        return __rt_errno;
    }

    tid = rt_thread_self();
    if (tid == RT_NULL)
        return __rt_errno;

    return tid->error;
}
RTM_EXPORT(rt_get_errno);

/**
 * This function sets the global errno for the current thread.
 *
 * @param error is the errno shall be set.
 */
void rt_set_errno(rt_err_t error)
{
    rt_thread_t tid;

    if (rt_interrupt_get_nest() != 0)
    {
        /* it's in interrupt context */
        __rt_errno = error;

        return;
    }

    tid = rt_thread_self();
    if (tid == RT_NULL)
    {
        __rt_errno = error;

        return;
    }

    tid->error = error;
}
RTM_EXPORT(rt_set_errno);

/**
 * This function returns the address of the current thread errno.
 *
 * @return The errno address.
 */
int *_rt_errno(void)
{
    rt_thread_t tid;

    if (rt_interrupt_get_nest() != 0)
        return (int *)&__rt_errno;

    tid = rt_thread_self();
    if (tid != RT_NULL)
        return (int *) & (tid->error);

    return (int *)&__rt_errno;
}
RTM_EXPORT(_rt_errno);

#ifndef RT_KSERVICE_USING_STDLIB_MEMSET
/**
 * This function will set the content of memory to specified value.
 *
 * @param  s is the address of source memory, point to the memory block to be filled.
 *
 * @param  c is the value to be set. The value is passed in int form, but the function
 *         uses the unsigned character form of the value when filling the memory block.
 *
 * @param  count number of bytes to be set.
 *
 * @return The address of source memory.
 */
RT_WEAK void *rt_memset(void *s, int c, rt_ubase_t count)
{
#ifdef RT_KSERVICE_USING_TINY_SIZE
    char *xs = (char *)s;

    while (count--)
        *xs++ = c;

    return s;
#else
#define LBLOCKSIZE      (sizeof(long))
#define UNALIGNED(X)    ((long)X & (LBLOCKSIZE - 1))
#define TOO_SMALL(LEN)  ((LEN) < LBLOCKSIZE)

    unsigned int i;
    char *m = (char *)s;
    unsigned long buffer;
    unsigned long *aligned_addr;
    unsigned int d = c & 0xff;  /* To avoid sign extension, copy C to an
                                unsigned variable.  */

    if (!TOO_SMALL(count) && !UNALIGNED(s))
    {
        /* If we get this far, we know that count is large and s is word-aligned. */
        aligned_addr = (unsigned long *)s;

        /* Store d into each char sized location in buffer so that
         * we can set large blocks quickly.
         */
        if (LBLOCKSIZE == 4)
        {
            buffer = (d << 8) | d;
            buffer |= (buffer << 16);
        }
        else
        {
            buffer = 0;
            for (i = 0; i < LBLOCKSIZE; i ++)
                buffer = (buffer << 8) | d;
        }

        while (count >= LBLOCKSIZE * 4)
        {
            *aligned_addr++ = buffer;
            *aligned_addr++ = buffer;
            *aligned_addr++ = buffer;
            *aligned_addr++ = buffer;
            count -= 4 * LBLOCKSIZE;
        }

        while (count >= LBLOCKSIZE)
        {
            *aligned_addr++ = buffer;
            count -= LBLOCKSIZE;
        }

        /* Pick up the remainder with a bytewise loop. */
        m = (char *)aligned_addr;
    }

    while (count--)
    {
        *m++ = (char)d;
    }

    return s;

#undef LBLOCKSIZE
#undef UNALIGNED
#undef TOO_SMALL
#endif /* RT_KSERVICE_USING_TINY_SIZE */
}
RTM_EXPORT(rt_memset);
#endif /* RT_KSERVICE_USING_STDLIB_MEMSET */

#ifndef RT_KSERVICE_USING_STDLIB_MEMCPY
/**
 * This function will copy memory content from source address to destination address.
 *
 * @param  dst is the address of destination memory, points to the copied content.
 *
 * @param  src  is the address of source memory, pointing to the data source to be copied.
 *
 * @param  count is the copied length.
 *
 * @return The address of destination memory
 */
RT_WEAK void *rt_memcpy(void *dst, const void *src, rt_ubase_t count)
{
#ifdef RT_KSERVICE_USING_TINY_SIZE
    char *tmp = (char *)dst, *s = (char *)src;
    rt_ubase_t len;

    if (tmp <= s || tmp > (s + count))
    {
        while (count--)
            *tmp ++ = *s ++;
    }
    else
    {
        for (len = count; len > 0; len --)
            tmp[len - 1] = s[len - 1];
    }

    return dst;
#else

#define UNALIGNED(X, Y) \
    (((long)X & (sizeof (long) - 1)) | ((long)Y & (sizeof (long) - 1)))
#define BIGBLOCKSIZE    (sizeof (long) << 2)
#define LITTLEBLOCKSIZE (sizeof (long))
#define TOO_SMALL(LEN)  ((LEN) < BIGBLOCKSIZE)

    char *dst_ptr = (char *)dst;
    char *src_ptr = (char *)src;
    long *aligned_dst;
    long *aligned_src;
    int len = count;

    /* If the size is small, or either SRC or DST is unaligned,
    then punt into the byte copy loop.  This should be rare. */
    if (!TOO_SMALL(len) && !UNALIGNED(src_ptr, dst_ptr))
    {
        aligned_dst = (long *)dst_ptr;
        aligned_src = (long *)src_ptr;

        /* Copy 4X long words at a time if possible. */
        while (len >= BIGBLOCKSIZE)
        {
            *aligned_dst++ = *aligned_src++;
            *aligned_dst++ = *aligned_src++;
            *aligned_dst++ = *aligned_src++;
            *aligned_dst++ = *aligned_src++;
            len -= BIGBLOCKSIZE;
        }

        /* Copy one long word at a time if possible. */
        while (len >= LITTLEBLOCKSIZE)
        {
            *aligned_dst++ = *aligned_src++;
            len -= LITTLEBLOCKSIZE;
        }

        /* Pick up any residual with a byte copier. */
        dst_ptr = (char *)aligned_dst;
        src_ptr = (char *)aligned_src;
    }

    while (len--)
        *dst_ptr++ = *src_ptr++;

    return dst;
#undef UNALIGNED
#undef BIGBLOCKSIZE
#undef LITTLEBLOCKSIZE
#undef TOO_SMALL
#endif /* RT_KSERVICE_USING_TINY_SIZE */
}
RTM_EXPORT(rt_memcpy);
#endif /* RT_KSERVICE_USING_STDLIB_MEMCPY */

#ifndef RT_KSERVICE_USING_STDLIB

/**
 * This function will move memory content from source address to destination
 * address. If the destination memory does not overlap with the source memory,
 * the function is the same as memcpy().
 *
 * @param  dest is the address of destination memory, points to the copied content.
 *
 * @param  src is the address of source memory, point to the data source to be copied.
 *
 * @param  n is the copied length.
 *
 * @return The address of destination memory.
 */
void *rt_memmove(void *dest, const void *src, rt_size_t n)
{
    char *tmp = (char *)dest, *s = (char *)src;

    if (s < tmp && tmp < s + n)
    {
        tmp += n;
        s += n;

        while (n--)
            *(--tmp) = *(--s);
    }
    else
    {
        while (n--)
            *tmp++ = *s++;
    }

    return dest;
}
RTM_EXPORT(rt_memmove);

/**
 * This function will compare two areas of memory.
 *
 * @param  cs is a block of memory.
 *
 * @param  ct is another block of memory.
 *
 * @param  count is the size of the area.
 *
 * @return Compare the results:
 *         If the result < 0, cs is smaller than ct.
 *         If the result > 0, cs is greater than ct.
 *         If the result = 0, cs is equal to ct.
 */
rt_int32_t rt_memcmp(const void *cs, const void *ct, rt_size_t count)
{
    const unsigned char *su1, *su2;
    int res = 0;

    for (su1 = (const unsigned char *)cs, su2 = (const unsigned char *)ct; 0 < count; ++su1, ++su2, count--)
        if ((res = *su1 - *su2) != 0)
            break;

    return res;
}
RTM_EXPORT(rt_memcmp);

/**
 * This function will return the first occurrence of a string, without the
 * terminator '\0'.
 *
 * @param  s1 is the source string.
 *
 * @param  s2 is the find string.
 *
 * @return The first occurrence of a s2 in s1, or RT_NULL if no found.
 */
char *rt_strstr(const char *s1, const char *s2)
{
    int l1, l2;

    l2 = rt_strlen(s2);
    if (!l2)
        return (char *)s1;
    l1 = rt_strlen(s1);
    while (l1 >= l2)
    {
        l1 --;
        if (!rt_memcmp(s1, s2, l2))
            return (char *)s1;
        s1 ++;
    }

    return RT_NULL;
}
RTM_EXPORT(rt_strstr);

/**
 * This function will compare two strings while ignoring differences in case
 *
 * @param  a is the string to be compared.
 *
 * @param  b is the string to be compared.
 *
 * @return Compare the results:
 *         If the result < 0, a is smaller than a.
 *         If the result > 0, a is greater than a.
 *         If the result = 0, a is equal to a.
 */
rt_int32_t rt_strcasecmp(const char *a, const char *b)
{
    int ca, cb;

    do
    {
        ca = *a++ & 0xff;
        cb = *b++ & 0xff;
        if (ca >= 'A' && ca <= 'Z')
            ca += 'a' - 'A';
        if (cb >= 'A' && cb <= 'Z')
            cb += 'a' - 'A';
    }
    while (ca == cb && ca != '\0');

    return ca - cb;
}
RTM_EXPORT(rt_strcasecmp);

/**
 * This function will copy string no more than n bytes.
 *
 * @param  dst points to the address used to store the copied content.
 *
 * @param  src is the string to be copied.
 *
 * @param  n is the maximum copied length.
 *
 * @return The address where the copied content is stored.
 */
char *rt_strncpy(char *dst, const char *src, rt_size_t n)
{
    if (n != 0)
    {
        char *d = dst;
        const char *s = src;

        do
        {
            if ((*d++ = *s++) == 0)
            {
                /* NUL pad the remaining n-1 bytes */
                while (--n != 0)
                    *d++ = 0;
                break;
            }
        } while (--n != 0);
    }

    return (dst);
}
RTM_EXPORT(rt_strncpy);

/**
 * This function will copy string.
 *
 * @param  dst points to the address used to store the copied content.
 *
 * @param  src is the string to be copied.
 *
 * @return The address where the copied content is stored.
 */
char *rt_strcpy(char *dst, const char *src)
{
    char *dest = dst;

    while (*src != '\0')
    {
        *dst = *src;
        dst++;
        src++;
    }

    *dst = '\0';
    return dest;
}
RTM_EXPORT(rt_strcpy);

/**
 * This function will compare two strings with specified maximum length.
 *
 * @param  cs is the string to be compared.
 *
 * @param  ct is the string to be compared.
 *
 * @param  count is the maximum compare length.
 *
 * @return Compare the results:
 *         If the result < 0, cs is smaller than ct.
 *         If the result > 0, cs is greater than ct.
 *         If the result = 0, cs is equal to ct.
 */
rt_int32_t rt_strncmp(const char *cs, const char *ct, rt_size_t count)
{
    register signed char __res = 0;

    while (count)
    {
        if ((__res = *cs - *ct++) != 0 || !*cs++)
            break;
        count --;
    }

    return __res;
}
RTM_EXPORT(rt_strncmp);

/**
 * This function will compare two strings without specified length.
 *
 * @param  cs is the string to be compared.
 *
 * @param  ct is the string to be compared.
 *
 * @return Compare the results:
 *         If the result < 0, cs is smaller than ct.
 *         If the result > 0, cs is greater than ct.
 *         If the result = 0, cs is equal to ct.
 */
rt_int32_t rt_strcmp(const char *cs, const char *ct)
{
    while (*cs && *cs == *ct)
    {
        cs++;
        ct++;
    }

    return (*cs - *ct);
}
RTM_EXPORT(rt_strcmp);

/**
 * This function will return the length of a string, which terminate will
 * null character.
 *
 * @param  s is the string
 *
 * @return The length of string.
 */
rt_size_t rt_strlen(const char *s)
{
    const char *sc;

    for (sc = s; *sc != '\0'; ++sc) /* nothing */
        ;

    return sc - s;
}
RTM_EXPORT(rt_strlen);

#endif /* RT_KSERVICE_USING_STDLIB */

#if !defined(RT_KSERVICE_USING_STDLIB) || defined(__ARMCC_VERSION)
/**
 * The  strnlen()  function  returns the number of characters in the
 * string pointed to by s, excluding the terminating null byte ('\0'),
 * but at most maxlen.  In doing this, strnlen() looks only at the
 * first maxlen characters in the string pointed to by s and never
 * beyond s+maxlen.
 *
 * @param  s is the string.
 *
 * @param  maxlen is the max size.
 *
 * @return The length of string.
 */
rt_size_t rt_strnlen(const char *s, rt_ubase_t maxlen)
{
    const char *sc;

    for (sc = s; *sc != '\0' && (rt_ubase_t)(sc - s) < maxlen; ++sc) /* nothing */
        ;

    return sc - s;
}
RTM_EXPORT(rt_strnlen);
#ifdef __ARMCC_VERSION
rt_size_t strnlen(const char *s, rt_size_t maxlen) __attribute__((alias("rt_strnlen")));
#endif /* __ARMCC_VERSION */
#endif /* !defined(RT_KSERVICE_USING_STDLIB) || defined(__ARMCC_VERSION) */

#ifdef RT_USING_HEAP
/**
 * This function will duplicate a string.
 *
 * @param  s is the string to be duplicated.
 *
 * @return The string address of the copy.
 */
char *rt_strdup(const char *s)
{
    rt_size_t len = rt_strlen(s) + 1;
    char *tmp = (char *)rt_malloc(len);

    if (!tmp)
        return RT_NULL;

    rt_memcpy(tmp, s, len);

    return tmp;
}
RTM_EXPORT(rt_strdup);
#ifdef __ARMCC_VERSION
char *strdup(const char *s) __attribute__((alias("rt_strdup")));
#endif /* __ARMCC_VERSION */
#endif /* RT_USING_HEAP */

/**
 * This function will show the version of rt-thread rtos
 */
void rt_show_version(void)
{
    rt_kprintf("\n \\ | /\n");
    rt_kprintf("- RT -     Thread Operating System\n");
    rt_kprintf(" / | \\     %d.%d.%d build %s %s\n",
               RT_VERSION, RT_SUBVERSION, RT_REVISION, __DATE__, __TIME__);
    rt_kprintf(" 2006 - 2022 Copyright by RT-Thread team\n");
}
RTM_EXPORT(rt_show_version);

/* private function */
#define _ISDIGIT(c)  ((unsigned)((c) - '0') < 10)

/**
 * This function will duplicate a string.
 *
 * @param  n is the string to be duplicated.
 *
 * @param  base is support divide instructions value.
 *
 * @return the duplicated string pointer.
 */
#ifdef RT_PRINTF_LONGLONG
rt_inline int divide(long long *n, int base)
#else
rt_inline int divide(long *n, int base)
#endif /* RT_PRINTF_LONGLONG */
{
    int res;

    /* optimized for processor which does not support divide instructions. */
    if (base == 10)
    {
#ifdef RT_PRINTF_LONGLONG
        res = (int)(((unsigned long long)*n) % 10U);
        *n = (long long)(((unsigned long long)*n) / 10U);
#else
        res = (int)(((unsigned long)*n) % 10U);
        *n = (long)(((unsigned long)*n) / 10U);
#endif
    }
    else
    {
#ifdef RT_PRINTF_LONGLONG
        res = (int)(((unsigned long long)*n) % 16U);
        *n = (long long)(((unsigned long long)*n) / 16U);
#else
        res = (int)(((unsigned long)*n) % 16U);
        *n = (long)(((unsigned long)*n) / 16U);
#endif
    }

    return res;
}

rt_inline int skip_atoi(const char **s)
{
    register int i = 0;
    while (_ISDIGIT(**s))
        i = i * 10 + *((*s)++) - '0';

    return i;
}

#define ZEROPAD     (1 << 0)    /* pad with zero */
#define SIGN        (1 << 1)    /* unsigned/signed long */
#define PLUS        (1 << 2)    /* show plus */
#define SPACE       (1 << 3)    /* space if plus */
#define LEFT        (1 << 4)    /* left justified */
#define SPECIAL     (1 << 5)    /* 0x */
#define LARGE       (1 << 6)    /* use 'ABCDEF' instead of 'abcdef' */

static char *print_number(char *buf,
                          char *end,
#ifdef RT_PRINTF_LONGLONG
                          long long  num,
#else
                          long  num,
#endif /* RT_PRINTF_LONGLONG */
                          int   base,
                          int   s,
#ifdef RT_PRINTF_PRECISION
                          int   precision,
#endif /* RT_PRINTF_PRECISION */
                          int   type)
{
    char c, sign;
#ifdef RT_PRINTF_LONGLONG
    char tmp[32];
#else
    char tmp[16];
#endif /* RT_PRINTF_LONGLONG */
    int precision_bak = precision;
    const char *digits;
    static const char small_digits[] = "0123456789abcdef";
    static const char large_digits[] = "0123456789ABCDEF";
    register int i;
    register int size;

    size = s;

    digits = (type & LARGE) ? large_digits : small_digits;
    if (type & LEFT)
        type &= ~ZEROPAD;

    c = (type & ZEROPAD) ? '0' : ' ';

    /* get sign */
    sign = 0;
    if (type & SIGN)
    {
        if (num < 0)
        {
            sign = '-';
            num = -num;
        }
        else if (type & PLUS)
            sign = '+';
        else if (type & SPACE)
            sign = ' ';
    }

#ifdef RT_PRINTF_SPECIAL
    if (type & SPECIAL)
    {
        if (base == 16)
            size -= 2;
        else if (base == 8)
            size--;
    }
#endif /* RT_PRINTF_SPECIAL */

    i = 0;
    if (num == 0)
        tmp[i++] = '0';
    else
    {
        while (num != 0)
            tmp[i++] = digits[divide(&num, base)];
    }

#ifdef RT_PRINTF_PRECISION
    if (i > precision)
        precision = i;
    size -= precision;
#else
    size -= i;
#endif /* RT_PRINTF_PRECISION */

    if (!(type & (ZEROPAD | LEFT)))
    {
        if ((sign) && (size > 0))
            size--;

        while (size-- > 0)
        {
            if (buf < end)
                *buf = ' ';
            ++ buf;
        }
    }

    if (sign)
    {
        if (buf < end)
        {
            *buf = sign;
        }
        -- size;
        ++ buf;
    }

#ifdef RT_PRINTF_SPECIAL
    if (type & SPECIAL)
    {
        if (base == 8)
        {
            if (buf < end)
                *buf = '0';
            ++ buf;
        }
        else if (base == 16)
        {
            if (buf < end)
                *buf = '0';
            ++ buf;
            if (buf < end)
            {
                *buf = type & LARGE ? 'X' : 'x';
            }
            ++ buf;
        }
    }
#endif /* RT_PRINTF_SPECIAL */

    /* no align to the left */
    if (!(type & LEFT))
    {
        while (size-- > 0)
        {
            if (buf < end)
                *buf = c;
            ++ buf;
        }
    }

#ifdef RT_PRINTF_PRECISION
    while (i < precision--)
    {
        if (buf < end)
            *buf = '0';
        ++ buf;
    }
#endif /* RT_PRINTF_PRECISION */

    /* put number in the temporary buffer */
    while (i-- > 0 && (precision_bak != 0))
    {
        if (buf < end)
            *buf = tmp[i];
        ++ buf;
    }

    while (size-- > 0)
    {
        if (buf < end)
            *buf = ' ';
        ++ buf;
    }

    return buf;
}

/**
 * This function will fill a formatted string to buffer.
 *
 * @param  buf is the buffer to save formatted string.
 *
 * @param  size is the size of buffer.
 *
 * @param  fmt is the format parameters.
 *
 * @param  args is a list of variable parameters.
 *
 * @return The number of characters actually written to buffer.
 */
RT_WEAK int rt_vsnprintf(char *buf, rt_size_t size, const char *fmt, va_list args)
{
#ifdef RT_PRINTF_LONGLONG
    unsigned long long num;
#else
    rt_uint32_t num;
#endif /* RT_PRINTF_LONGLONG */
    int i, len;
    char *str, *end, c;
    const char *s;

    rt_uint8_t base;            /* the base of number */
    rt_uint8_t flags;           /* flags to print number */
    rt_uint8_t qualifier;       /* 'h', 'l', or 'L' for integer fields */
    rt_int32_t field_width;     /* width of output field */

#ifdef RT_PRINTF_PRECISION
    int precision;      /* min. # of digits for integers and max for a string */
#endif /* RT_PRINTF_PRECISION */

    str = buf;
    end = buf + size;

    /* Make sure end is always >= buf */
    if (end < buf)
    {
        end  = ((char *) - 1);
        size = end - buf;
    }

    for (; *fmt ; ++fmt)
    {
        if (*fmt != '%')
        {
            if (str < end)
                *str = *fmt;
            ++ str;
            continue;
        }

        /* process flags */
        flags = 0;

        while (1)
        {
            /* skips the first '%' also */
            ++ fmt;
            if (*fmt == '-') flags |= LEFT;
            else if (*fmt == '+') flags |= PLUS;
            else if (*fmt == ' ') flags |= SPACE;
            else if (*fmt == '#') flags |= SPECIAL;
            else if (*fmt == '0') flags |= ZEROPAD;
            else break;
        }

        /* get field width */
        field_width = -1;
        if (_ISDIGIT(*fmt)) field_width = skip_atoi(&fmt);
        else if (*fmt == '*')
        {
            ++ fmt;
            /* it's the next argument */
            field_width = va_arg(args, int);
            if (field_width < 0)
            {
                field_width = -field_width;
                flags |= LEFT;
            }
        }

#ifdef RT_PRINTF_PRECISION
        /* get the precision */
        precision = -1;
        if (*fmt == '.')
        {
            ++ fmt;
            if (_ISDIGIT(*fmt)) precision = skip_atoi(&fmt);
            else if (*fmt == '*')
            {
                ++ fmt;
                /* it's the next argument */
                precision = va_arg(args, int);
            }
            if (precision < 0) precision = 0;
        }
#endif /* RT_PRINTF_PRECISION */
        /* get the conversion qualifier */
        qualifier = 0;
#ifdef RT_PRINTF_LONGLONG
        if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L')
#else
        if (*fmt == 'h' || *fmt == 'l')
#endif /* RT_PRINTF_LONGLONG */
        {
            qualifier = *fmt;
            ++ fmt;
#ifdef RT_PRINTF_LONGLONG
            if (qualifier == 'l' && *fmt == 'l')
            {
                qualifier = 'L';
                ++ fmt;
            }
#endif /* RT_PRINTF_LONGLONG */
        }

        /* the default base */
        base = 10;

        switch (*fmt)
        {
        case 'c':
            if (!(flags & LEFT))
            {
                while (--field_width > 0)
                {
                    if (str < end) *str = ' ';
                    ++ str;
                }
            }

            /* get character */
            c = (rt_uint8_t)va_arg(args, int);
            if (str < end) *str = c;
            ++ str;

            /* put width */
            while (--field_width > 0)
            {
                if (str < end) *str = ' ';
                ++ str;
            }
            continue;

        case 's':
            s = va_arg(args, char *);
            if (!s) s = "(NULL)";

            for (len = 0; (len != field_width) && (s[len] != '\0'); len++);
#ifdef RT_PRINTF_PRECISION
            if (precision > 0 && len > precision) len = precision;
#endif /* RT_PRINTF_PRECISION */

            if (!(flags & LEFT))
            {
                while (len < field_width--)
                {
                    if (str < end) *str = ' ';
                    ++ str;
                }
            }

            for (i = 0; i < len; ++i)
            {
                if (str < end) *str = *s;
                ++ str;
                ++ s;
            }

            while (len < field_width--)
            {
                if (str < end) *str = ' ';
                ++ str;
            }
            continue;

        case 'p':
            if (field_width == -1)
            {
                field_width = sizeof(void *) << 1;
                flags |= ZEROPAD;
            }
#ifdef RT_PRINTF_PRECISION
            str = print_number(str, end,
                               (long)va_arg(args, void *),
                               16, field_width, precision, flags);
#else
            str = print_number(str, end,
                               (long)va_arg(args, void *),
                               16, field_width, flags);
#endif /* RT_PRINTF_PRECISION */
            continue;

        case '%':
            if (str < end) *str = '%';
            ++ str;
            continue;

        /* integer number formats - set up the flags and "break" */
        case 'o':
            base = 8;
            break;

        case 'X':
            flags |= LARGE;
        case 'x':
            base = 16;
            break;

        case 'd':
        case 'i':
            flags |= SIGN;
        case 'u':
            break;

        default:
            if (str < end) *str = '%';
            ++ str;

            if (*fmt)
            {
                if (str < end) *str = *fmt;
                ++ str;
            }
            else
            {
                -- fmt;
            }
            continue;
        }

#ifdef RT_PRINTF_LONGLONG
        if (qualifier == 'L') num = va_arg(args, long long);
        else if (qualifier == 'l')
#else
        if (qualifier == 'l')
#endif /* RT_PRINTF_LONGLONG */
        {
            num = va_arg(args, rt_uint32_t);
            if (flags & SIGN) num = (rt_int32_t)num;
        }
        else if (qualifier == 'h')
        {
            num = (rt_uint16_t)va_arg(args, rt_int32_t);
            if (flags & SIGN) num = (rt_int16_t)num;
        }
        else
        {
            num = va_arg(args, rt_uint32_t);
            if (flags & SIGN) num = (rt_int32_t)num;
        }
#ifdef RT_PRINTF_PRECISION
        str = print_number(str, end, num, base, field_width, precision, flags);
#else
        str = print_number(str, end, num, base, field_width, flags);
#endif /* RT_PRINTF_PRECISION */
    }

    if (size > 0)
    {
        if (str < end) *str = '\0';
        else
        {
            end[-1] = '\0';
        }
    }

    /* the trailing null byte doesn't count towards the total
    * ++str;
    */
    return str - buf;
}
RTM_EXPORT(rt_vsnprintf);

/**
 * This function will fill a formatted string to buffer.
 *
 * @param  buf is the buffer to save formatted string.
 *
 * @param  size is the size of buffer.
 *
 * @param  fmt is the format parameters.
 *
 * @return The number of characters actually written to buffer.
 */
int rt_snprintf(char *buf, rt_size_t size, const char *fmt, ...)
{
    rt_int32_t n;
    va_list args;

    va_start(args, fmt);
    n = rt_vsnprintf(buf, size, fmt, args);
    va_end(args);

    return n;
}
RTM_EXPORT(rt_snprintf);

/**
 * This function will fill a formatted string to buffer.
 *
 * @param  buf is the buffer to save formatted string.
 *
 * @param  format is the format parameters.
 *
 * @param  arg_ptr is a list of variable parameters.
 *
 * @return The number of characters actually written to buffer.
 */
int rt_vsprintf(char *buf, const char *format, va_list arg_ptr)
{
    return rt_vsnprintf(buf, (rt_size_t) - 1, format, arg_ptr);
}
RTM_EXPORT(rt_vsprintf);

/**
 * This function will fill a formatted string to buffer
 *
 * @param  buf the buffer to save formatted string.
 *
 * @param  format is the format parameters.
 *
 * @return The number of characters actually written to buffer.
 */
int rt_sprintf(char *buf, const char *format, ...)
{
    rt_int32_t n;
    va_list arg_ptr;

    va_start(arg_ptr, format);
    n = rt_vsprintf(buf, format, arg_ptr);
    va_end(arg_ptr);

    return n;
}
RTM_EXPORT(rt_sprintf);

#ifdef RT_USING_CONSOLE

#ifdef RT_USING_DEVICE
/**
 * This function returns the device using in console.
 *
 * @return Returns the console device pointer or RT_NULL.
 */
rt_device_t rt_console_get_device(void)
{
    return _console_device;
}
RTM_EXPORT(rt_console_get_device);

/**
 * This function will set a device as console device.
 * After set a device to console, all output of rt_kprintf will be
 * redirected to this new device.
 *
 * @param  name is the name of new console device.
 *
 * @return the old console device handler on successful, or RT_NULL on failure.
 */
rt_device_t rt_console_set_device(const char *name)
{
    rt_device_t new_device, old_device;

    /* save old device */
    old_device = _console_device;

    /* find new console device */
    new_device = rt_device_find(name);

    /* check whether it's a same device */
    if (new_device == old_device) return RT_NULL;

    if (new_device != RT_NULL)
    {
        if (_console_device != RT_NULL)
        {
            /* close old console device */
            rt_device_close(_console_device);
        }

        /* set new console device */
        rt_device_open(new_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_STREAM);
        _console_device = new_device;
    }

    return old_device;
}
RTM_EXPORT(rt_console_set_device);
#endif /* RT_USING_DEVICE */

RT_WEAK void rt_hw_console_output(const char *str)
{
    /* empty console output */
}
RTM_EXPORT(rt_hw_console_output);

/**
 * This function will put string to the console.
 *
 * @param str is the string output to the console.
 */
void rt_kputs(const char *str)
{
    if (!str) return;

#ifdef RT_USING_DEVICE
    if (_console_device == RT_NULL)
    {
        rt_hw_console_output(str);
    }
    else
    {
        rt_device_write(_console_device, 0, str, rt_strlen(str));
    }
#else
    rt_hw_console_output(str);
#endif /* RT_USING_DEVICE */
}

/**
 * This function will print a formatted string on system console.
 *
 * @param fmt is the format parameters.
 *
 * @return The number of characters actually written to buffer.
 */
RT_WEAK int rt_kprintf(const char *fmt, ...)
{
    va_list args;
    rt_size_t length;
    static char rt_log_buf[RT_CONSOLEBUF_SIZE];

    va_start(args, fmt);
    /* the return value of vsnprintf is the number of bytes that would be
     * written to buffer had if the size of the buffer been sufficiently
     * large excluding the terminating null byte. If the output string
     * would be larger than the rt_log_buf, we have to adjust the output
     * length. */
    length = rt_vsnprintf(rt_log_buf, sizeof(rt_log_buf) - 1, fmt, args);
    if (length > RT_CONSOLEBUF_SIZE - 1)
        length = RT_CONSOLEBUF_SIZE - 1;
#ifdef RT_USING_DEVICE
    if (_console_device == RT_NULL)
    {
        rt_hw_console_output(rt_log_buf);
    }
    else
    {
        rt_device_write(_console_device, 0, rt_log_buf, length);
    }
#else
    rt_hw_console_output(rt_log_buf);
#endif /* RT_USING_DEVICE */
    va_end(args);

    return length;
}
RTM_EXPORT(rt_kprintf);
#endif /* RT_USING_CONSOLE */

#if defined(RT_USING_HEAP) && !defined(RT_USING_USERHEAP)
#ifdef RT_USING_HOOK
static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
static void (*rt_free_hook)(void *ptr);

/**
 * @addtogroup Hook
 */

/**@{*/

/**
 * @brief This function will set a hook function, which will be invoked when a memory
 *        block is allocated from heap memory.
 *
 * @param hook the hook function.
 */
void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
{
    rt_malloc_hook = hook;
}

/**
 * @brief This function will set a hook function, which will be invoked when a memory
 *        block is released to heap memory.
 *
 * @param hook the hook function
 */
void rt_free_sethook(void (*hook)(void *ptr))
{
    rt_free_hook = hook;
}

/**@}*/

#endif /* RT_USING_HOOK */

#if defined(RT_USING_HEAP_ISR)
#elif defined(RT_USING_MUTEX)
static struct rt_mutex _lock;
#endif

rt_inline void _heap_lock_init(void)
{
#if defined(RT_USING_HEAP_ISR)
#elif defined(RT_USING_MUTEX)
    rt_mutex_init(&_lock, "heap", RT_IPC_FLAG_PRIO);
#endif
}

rt_inline rt_base_t _heap_lock(void)
{
#if defined(RT_USING_HEAP_ISR)
    return rt_hw_interrupt_disable();
#elif defined(RT_USING_MUTEX)
    if (rt_thread_self())
        return rt_mutex_take(&_lock, RT_WAITING_FOREVER);
    else
        return RT_EOK;
#else
    rt_enter_critical();
    return RT_EOK;
#endif
}

rt_inline void _heap_unlock(rt_base_t level)
{
#if defined(RT_USING_HEAP_ISR)
    rt_hw_interrupt_enable(level);
#elif defined(RT_USING_MUTEX)
    RT_ASSERT(level == RT_EOK);
    if (rt_thread_self())
        rt_mutex_release(&_lock);
#else
    rt_exit_critical();
#endif
}

#if defined(RT_USING_SMALL_MEM_AS_HEAP)
static rt_smem_t system_heap;
rt_inline void _smem_info(rt_size_t *total,
    rt_size_t *used, rt_size_t *max_used)
{
    if (total)
        *total = system_heap->total;
    if (used)
        *used = system_heap->used;
    if (max_used)
        *max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
    system_heap = rt_smem_init(_name, _start, _size)
#define _MEM_MALLOC(_size)  \
    rt_smem_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize)\
    rt_smem_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
    rt_smem_free(_ptr)
#define _MEM_INFO(_total, _used, _max)  \
    _smem_info(_total, _used, _max)
#elif defined(RT_USING_MEMHEAP_AS_HEAP)
static struct rt_memheap system_heap;
void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size);
void _memheap_free(void *rmem);
void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize);
#define _MEM_INIT(_name, _start, _size) \
    rt_memheap_init(&system_heap, _name, _start, _size)
#define _MEM_MALLOC(_size)  \
    _memheap_alloc(&system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize)    \
    _memheap_realloc(&system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr)   \
    _memheap_free(_ptr)
#define _MEM_INFO(_total, _used, _max)   \
    rt_memheap_info(&system_heap, _total, _used, _max)
#elif defined(RT_USING_SLAB_AS_HEAP)
static rt_slab_t system_heap;
rt_inline void _slab_info(rt_size_t *total,
    rt_size_t *used, rt_size_t *max_used)
{
    if (total)
        *total = system_heap->total;
    if (used)
        *used = system_heap->used;
    if (max_used)
        *max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
    system_heap = rt_slab_init(_name, _start, _size)
#define _MEM_MALLOC(_size)  \
    rt_slab_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize)    \
    rt_slab_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
    rt_slab_free(system_heap, _ptr)
#define _MEM_INFO       _slab_info
#else
#define _MEM_INIT(...)
#define _MEM_MALLOC(...)     RT_NULL
#define _MEM_REALLOC(...)    RT_NULL
#define _MEM_FREE(...)
#define _MEM_INFO(...)
#endif

/**
 * @brief This function will init system heap.
 *
 * @param begin_addr the beginning address of system page.
 *
 * @param end_addr the end address of system page.
 */
RT_WEAK void rt_system_heap_init(void *begin_addr, void *end_addr)
{
    rt_ubase_t begin_align = RT_ALIGN((rt_ubase_t)begin_addr, RT_ALIGN_SIZE);
    rt_ubase_t end_align   = RT_ALIGN_DOWN((rt_ubase_t)end_addr, RT_ALIGN_SIZE);

    RT_ASSERT(end_align > begin_align);

    /* Initialize system memory heap */
    _MEM_INIT("heap", begin_addr, end_align - begin_align);
    /* Initialize multi thread contention lock */
    _heap_lock_init();
}

/**
 * @brief Allocate a block of memory with a minimum of 'size' bytes.
 *
 * @param size is the minimum size of the requested block in bytes.
 *
 * @return the pointer to allocated memory or NULL if no free memory was found.
 */
RT_WEAK void *rt_malloc(rt_size_t size)
{
    rt_base_t level;
    void *ptr;

    /* Enter critical zone */
    level = _heap_lock();
    /* allocate memory block from system heap */
    ptr = _MEM_MALLOC(size);
    /* Exit critical zone */
    _heap_unlock(level);
    /* call 'rt_malloc' hook */
    RT_OBJECT_HOOK_CALL(rt_malloc_hook, (ptr, size));
    return ptr;
}
RTM_EXPORT(rt_malloc);

/**
 * @brief This function will change the size of previously allocated memory block.
 *
 * @param rmem is the pointer to memory allocated by rt_malloc.
 *
 * @param newsize is the required new size.
 *
 * @return the changed memory block address.
 */
RT_WEAK void *rt_realloc(void *rmem, rt_size_t newsize)
{
    rt_base_t level;
    void *nptr;

    /* Enter critical zone */
    level = _heap_lock();
    /* Change the size of previously allocated memory block */
    nptr = _MEM_REALLOC(rmem, newsize);
    /* Exit critical zone */
    _heap_unlock(level);
    return nptr;
}
RTM_EXPORT(rt_realloc);

/**
 * @brief  This function will contiguously allocate enough space for count objects
 *         that are size bytes of memory each and returns a pointer to the allocated
 *         memory.
 *
 * @note   The allocated memory is filled with bytes of value zero.
 *
 * @param  count is the number of objects to allocate.
 *
 * @param  size is the size of one object to allocate.
 *
 * @return pointer to allocated memory / NULL pointer if there is an error.
 */
RT_WEAK void *rt_calloc(rt_size_t count, rt_size_t size)
{
    void *p;

    /* allocate 'count' objects of size 'size' */
    p = rt_malloc(count * size);
    /* zero the memory */
    if (p)
    {
        rt_memset(p, 0, count * size);
    }
    return p;
}
RTM_EXPORT(rt_calloc);

/**
 * @brief This function will release the previously allocated memory block by
 *        rt_malloc. The released memory block is taken back to system heap.
 *
 * @param rmem the address of memory which will be released.
 */
RT_WEAK void rt_free(void *rmem)
{
    rt_base_t level;

    /* call 'rt_free' hook */
    RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
    /* Enter critical zone */
    level = _heap_lock();
    _MEM_FREE(rmem);
    /* Exit critical zone */
    _heap_unlock(level);
}
RTM_EXPORT(rt_free);

/**
* @brief This function will caculate the total memory, the used memory, and
*        the max used memory.
*
* @param total is a pointer to get the total size of the memory.
*
* @param used is a pointer to get the size of memory used.
*
* @param max_used is a pointer to get the maximum memory used.
*/
RT_WEAK void rt_memory_info(rt_size_t *total,
                            rt_size_t *used,
                            rt_size_t *max_used)
{
    rt_base_t level;

    /* Enter critical zone */
    level = _heap_lock();
    _MEM_INFO(total, used, max_used);
    /* Exit critical zone */
    _heap_unlock(level);
}
RTM_EXPORT(rt_memory_info);

#if defined(RT_USING_SLAB) && defined(RT_USING_SLAB_AS_HEAP)
void *rt_page_alloc(rt_size_t npages)
{
    rt_base_t level;
    void *ptr;

    /* Enter critical zone */
    level = _heap_lock();
    /* alloc page */
    ptr = rt_slab_page_alloc(system_heap, npages);
    /* Exit critical zone */
    _heap_unlock(level);
    return ptr;
}

void rt_page_free(void *addr, rt_size_t npages)
{
    rt_base_t level;

    /* Enter critical zone */
    level = _heap_lock();
    /* free page */
    rt_slab_page_free(system_heap, addr, npages);
    /* Exit critical zone */
    _heap_unlock(level);
}
#endif

/**
 * This function allocates a memory block, which address is aligned to the
 * specified alignment size.
 *
 * @param  size is the allocated memory block size.
 *
 * @param  align is the alignment size.
 *
 * @return The memory block address was returned successfully, otherwise it was
 *         returned empty RT_NULL.
 */
RT_WEAK void *rt_malloc_align(rt_size_t size, rt_size_t align)
{
    void *ptr;
    void *align_ptr;
    int uintptr_size;
    rt_size_t align_size;

    /* sizeof pointer */
    uintptr_size = sizeof(void*);
    uintptr_size -= 1;

    /* align the alignment size to uintptr size byte */
    align = ((align + uintptr_size) & ~uintptr_size);

    /* get total aligned size */
    align_size = ((size + uintptr_size) & ~uintptr_size) + align;
    /* allocate memory block from heap */
    ptr = rt_malloc(align_size);
    if (ptr != RT_NULL)
    {
        /* the allocated memory block is aligned */
        if (((rt_ubase_t)ptr & (align - 1)) == 0)
        {
            align_ptr = (void *)((rt_ubase_t)ptr + align);
        }
        else
        {
            align_ptr = (void *)(((rt_ubase_t)ptr + (align - 1)) & ~(align - 1));
        }

        /* set the pointer before alignment pointer to the real pointer */
        *((rt_ubase_t *)((rt_ubase_t)align_ptr - sizeof(void *))) = (rt_ubase_t)ptr;

        ptr = align_ptr;
    }

    return ptr;
}
RTM_EXPORT(rt_malloc_align);

/**
 * This function release the memory block, which is allocated by
 * rt_malloc_align function and address is aligned.
 *
 * @param ptr is the memory block pointer.
 */
RT_WEAK void rt_free_align(void *ptr)
{
    void *real_ptr;

    real_ptr = (void *) * (rt_ubase_t *)((rt_ubase_t)ptr - sizeof(void *));
    rt_free(real_ptr);
}
RTM_EXPORT(rt_free_align);
#endif /* RT_USING_HEAP */

#ifndef RT_USING_CPU_FFS
#ifdef RT_USING_TINY_FFS
const rt_uint8_t __lowest_bit_bitmap[] =
{
    /*  0 - 7  */  0,  1,  2, 27,  3, 24, 28, 32,
    /*  8 - 15 */  4, 17, 25, 31, 29, 12, 32, 14,
    /* 16 - 23 */  5,  8, 18, 32, 26, 23, 32, 16,
    /* 24 - 31 */ 30, 11, 13,  7, 32, 22, 15, 10,
    /* 32 - 36 */  6, 21,  9, 20, 19
};

/**
 * This function finds the first bit set (beginning with the least significant bit)
 * in value and return the index of that bit.
 *
 * Bits are numbered starting at 1 (the least significant bit).  A return value of
 * zero from any of these functions means that the argument was zero.
 *
 * @return return the index of the first bit set. If value is 0, then this function
 * shall return 0.
 */
int __rt_ffs(int value)
{
    return __lowest_bit_bitmap[(rt_uint32_t)(value & (value - 1) ^ value) % 37];
}
#else
const rt_uint8_t __lowest_bit_bitmap[] =
{
    /* 00 */ 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 10 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 20 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 30 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 40 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 50 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 60 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 70 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 80 */ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* 90 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* A0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* B0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* C0 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* D0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* E0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
    /* F0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/**
 * This function finds the first bit set (beginning with the least significant bit)
 * in value and return the index of that bit.
 *
 * Bits are numbered starting at 1 (the least significant bit).  A return value of
 * zero from any of these functions means that the argument was zero.
 *
 * @return Return the index of the first bit set. If value is 0, then this function
 *         shall return 0.
 */
int __rt_ffs(int value)
{
    if (value == 0) return 0;

    if (value & 0xff)
        return __lowest_bit_bitmap[value & 0xff] + 1;

    if (value & 0xff00)
        return __lowest_bit_bitmap[(value & 0xff00) >> 8] + 9;

    if (value & 0xff0000)
        return __lowest_bit_bitmap[(value & 0xff0000) >> 16] + 17;

    return __lowest_bit_bitmap[(value & 0xff000000) >> 24] + 25;
}
#endif /* RT_USING_TINY_FFS */
#endif /* RT_USING_CPU_FFS */

#ifndef __on_rt_assert_hook
    #define __on_rt_assert_hook(ex, func, line)         __ON_HOOK_ARGS(rt_assert_hook, (ex, func, line))
#endif

#ifdef RT_DEBUG
/* RT_ASSERT(EX)'s hook */

void (*rt_assert_hook)(const char *ex, const char *func, rt_size_t line);

/**
 * This function will set a hook function to RT_ASSERT(EX). It will run when the expression is false.
 *
 * @param hook is the hook function.
 */
void rt_assert_set_hook(void (*hook)(const char *ex, const char *func, rt_size_t line))
{
    rt_assert_hook = hook;
}

/**
 * The RT_ASSERT function.
 *
 * @param ex_string is the assertion condition string.
 *
 * @param func is the function name when assertion.
 *
 * @param line is the file line number when assertion.
 */
void rt_assert_handler(const char *ex_string, const char *func, rt_size_t line)
{
    volatile char dummy = 0;

    if (rt_assert_hook == RT_NULL)
    {
#ifdef RT_USING_MODULE
        if (dlmodule_self())
        {
            /* close assertion module */
            dlmodule_exit(-1);
        }
        else
#endif /*RT_USING_MODULE*/
        {
            rt_kprintf("(%s) assertion failed at function:%s, line number:%d \n", ex_string, func, line);
            while (dummy == 0);
        }
    }
    else
    {
        rt_assert_hook(ex_string, func, line);
    }
}
RTM_EXPORT(rt_assert_handler);
#endif /* RT_DEBUG */

/**@}*/