time.c 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2019-08-21     zhangjun     copy from minilibc
 * 2020-09-07     Meco Man     combine gcc armcc iccarm
 * 2021-02-05     Meco Man     add timegm()
 * 2021-02-07     Meco Man     fixed gettimeofday()
 * 2021-02-08     Meco Man     add settimeofday() stime()
 * 2021-02-10     Meco Man     add ctime_r() and re-implement ctime()
 * 2021-02-11     Meco Man     fix bug #3183 - align days[] and months[] to 4 bytes
 * 2021-02-12     Meco Man     add errno
 * 2012-12-08     Bernard      <clock_time.c> fix the issue of _timevalue.tv_usec initialization,
 *                             which found by Rob <rdent@iinet.net.au>
 * 2021-02-12     Meco Man     move all of the functions located in <clock_time.c> to this file
 * 2021-03-15     Meco Man     fixed a bug of leaking memory in asctime()
 * 2021-05-01     Meco Man     support fixed timezone
 * 2021-07-21     Meco Man     implement that change/set timezone APIs
 */

#include "sys/time.h"
#include <sys/errno.h>
#include <rtthread.h>
#include <rthw.h>
#include <unistd.h>
#ifdef RT_USING_POSIX_DELAY
#include <delay.h>
#endif
#ifdef RT_USING_RTC
#include <rtdevice.h>
#endif

#define DBG_TAG    "time"
#define DBG_LVL    DBG_INFO
#include <rtdbg.h>

#define _WARNING_NO_RTC "Cannot find a RTC device!"

/* seconds per day */
#define SPD 24*60*60

/* days per month -- nonleap! */
static const short __spm[13] =
{
    0,
    (31),
    (31 + 28),
    (31 + 28 + 31),
    (31 + 28 + 31 + 30),
    (31 + 28 + 31 + 30 + 31),
    (31 + 28 + 31 + 30 + 31 + 30),
    (31 + 28 + 31 + 30 + 31 + 30 + 31),
    (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31),
    (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30),
    (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31),
    (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30),
    (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31),
};

ALIGN(4) static const char *days = "Sun Mon Tue Wed Thu Fri Sat ";
ALIGN(4) static const char *months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ";

static int __isleap(int year)
{
    /* every fourth year is a leap year except for century years that are
     * not divisible by 400. */
    /*  return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */
    return (!(year % 4) && ((year % 100) || !(year % 400)));
}

static void num2str(char *c, int i)
{
    c[0] = i / 10 + '0';
    c[1] = i % 10 + '0';
}

/**
 * Get time from RTC device (without timezone, UTC+0)
 * @param tv: struct timeval
 * @return the operation status, RT_EOK on successful
 */
static rt_err_t get_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
    static rt_device_t device = RT_NULL;
    rt_err_t rst = -RT_ERROR;

    if (tv == RT_NULL)
        return -RT_EINVAL;

    /* default is 0 */
    tv->tv_sec = 0;
    tv->tv_usec = 0;

    /* optimization: find rtc device only first */
    if (device == RT_NULL)
    {
        device = rt_device_find("rtc");
    }

    /* read timestamp from RTC device */
    if (device != RT_NULL)
    {
        if (rt_device_open(device, 0) == RT_EOK)
        {
            rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &tv->tv_sec);
            rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIMEVAL, tv);
            rt_device_close(device);
        }
    }
    else
    {
        LOG_W(_WARNING_NO_RTC);
        return -RT_ENOSYS;
    }

    return rst;

#else
    LOG_W(_WARNING_NO_RTC);
    return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}

/**
 * Set time to RTC device (without timezone)
 * @param tv: struct timeval
 * @return the operation status, RT_EOK on successful
 */
static int set_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
    static rt_device_t device = RT_NULL;
    rt_err_t rst = -RT_ERROR;

    if (tv == RT_NULL)
        return -RT_EINVAL;

    /* optimization: find rtc device only first */
    if (device == RT_NULL)
    {
        device = rt_device_find("rtc");
    }

    /* read timestamp from RTC device */
    if (device != RT_NULL)
    {
        if (rt_device_open(device, 0) == RT_EOK)
        {
            rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &tv->tv_sec);
            rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIMEVAL, tv);
            rt_device_close(device);
        }
    }
    else
    {
        LOG_W(_WARNING_NO_RTC);
        return -RT_ENOSYS;
    }

    return rst;

#else
    LOG_W(_WARNING_NO_RTC);
    return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}

struct tm *gmtime_r(const time_t *timep, struct tm *r)
{
    time_t i;
    register time_t work = *timep % (SPD);
    r->tm_sec = work % 60;
    work /= 60;
    r->tm_min = work % 60;
    r->tm_hour = work / 60;
    work = *timep / (SPD);
    r->tm_wday = (4 + work) % 7;
    for (i = 1970;; ++i)
    {
        register time_t k = __isleap(i) ? 366 : 365;
        if (work >= k)
            work -= k;
        else
            break;
    }
    r->tm_year = i - 1900;
    r->tm_yday = work;

    r->tm_mday = 1;
    if (__isleap(i) && (work > 58))
    {
        if (work == 59)
            r->tm_mday = 2; /* 29.2. */
        work -= 1;
    }

    for (i = 11; i && (__spm[i] > work); --i)
        ;
    r->tm_mon = i;
    r->tm_mday += work - __spm[i];

    r->tm_isdst = tz_is_dst();
    return r;
}
RTM_EXPORT(gmtime_r);

struct tm* gmtime(const time_t* t)
{
    static struct tm tmp;
    return gmtime_r(t, &tmp);
}
RTM_EXPORT(gmtime);

struct tm* localtime_r(const time_t* t, struct tm* r)
{
    time_t local_tz;

    local_tz = *t + (time_t)tz_get() * 3600;
    return gmtime_r(&local_tz, r);
}
RTM_EXPORT(localtime_r);

struct tm* localtime(const time_t* t)
{
    static struct tm tmp;
    return localtime_r(t, &tmp);
}
RTM_EXPORT(localtime);

time_t mktime(struct tm * const t)
{
    time_t timestamp;

    timestamp = timegm(t);
    timestamp = timestamp - 3600 * (time_t)tz_get();
    return timestamp;
}
RTM_EXPORT(mktime);

char* asctime_r(const struct tm *t, char *buf)
{
    /* Checking input validity */
    if ((int)rt_strlen(days) <= (t->tm_wday << 2) || (int)rt_strlen(months) <= (t->tm_mon << 2))
    {
        LOG_W("asctime_r: the input parameters exceeded the limit, please check it.");
        *(int*) buf = *(int*) days;
        *(int*) (buf + 4) = *(int*) months;
        num2str(buf + 8, t->tm_mday);
        if (buf[8] == '0')
            buf[8] = ' ';
        buf[10] = ' ';
        num2str(buf + 11, t->tm_hour);
        buf[13] = ':';
        num2str(buf + 14, t->tm_min);
        buf[16] = ':';
        num2str(buf + 17, t->tm_sec);
        buf[19] = ' ';
        num2str(buf + 20, 2000 / 100);
        num2str(buf + 22, 2000 % 100);
        buf[24] = '\n';
        buf[25] = '\0';
        return buf;
    }

    /* "Wed Jun 30 21:49:08 1993\n" */
    *(int*) buf = *(int*) (days + (t->tm_wday << 2));
    *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2));
    num2str(buf + 8, t->tm_mday);
    if (buf[8] == '0')
        buf[8] = ' ';
    buf[10] = ' ';
    num2str(buf + 11, t->tm_hour);
    buf[13] = ':';
    num2str(buf + 14, t->tm_min);
    buf[16] = ':';
    num2str(buf + 17, t->tm_sec);
    buf[19] = ' ';
    num2str(buf + 20, (t->tm_year + 1900) / 100);
    num2str(buf + 22, (t->tm_year + 1900) % 100);
    buf[24] = '\n';
    buf[25] = '\0';
    return buf;
}
RTM_EXPORT(asctime_r);

char* asctime(const struct tm *timeptr)
{
    static char buf[26];
    return asctime_r(timeptr, buf);
}
RTM_EXPORT(asctime);

char *ctime_r(const time_t * tim_p, char * result)
{
    struct tm tm;
    return asctime_r(localtime_r(tim_p, &tm), result);
}
RTM_EXPORT(ctime_r);

char* ctime(const time_t *tim_p)
{
    return asctime(localtime(tim_p));
}
RTM_EXPORT(ctime);

/**
 * Returns the current time.
 *
 * @param time_t * t the timestamp pointer, if not used, keep NULL.
 *
 * @return The value ((time_t)-1) is returned if the calendar time is not available.
 *         If timer is not a NULL pointer, the return value is also stored in timer.
 *
 */
RT_WEAK time_t time(time_t *t)
{
    struct timeval now;

    if(get_timeval(&now) == RT_EOK)
    {
        if (t)
        {
            *t = now.tv_sec;
        }
        return now.tv_sec;
    }
    else
    {
        rt_set_errno(EFAULT);
        return ((time_t)-1);
    }
}
RTM_EXPORT(time);

RT_WEAK clock_t clock(void)
{
    return rt_tick_get();
}
RTM_EXPORT(clock);

int stime(const time_t *t)
{
    struct timeval tv;

    if (!t)
    {
        rt_set_errno(EFAULT);
        return -1;
    }

    tv.tv_sec = *t;
    if (set_timeval(&tv) == RT_EOK)
    {
        return 0;
    }
    else
    {
        rt_set_errno(EFAULT);
        return -1;
    }
}
RTM_EXPORT(stime);

time_t timegm(struct tm * const t)
{
    register time_t day;
    register time_t i;
    register time_t years = (time_t)t->tm_year - 70;

    if (t->tm_sec > 60)
    {
        t->tm_min += t->tm_sec / 60;
        t->tm_sec %= 60;
    }
    if (t->tm_min > 60)
    {
        t->tm_hour += t->tm_min / 60;
        t->tm_min %= 60;
    }
    if (t->tm_hour > 24)
    {
        t->tm_mday += t->tm_hour / 24;
        t->tm_hour %= 24;
    }
    if (t->tm_mon > 12)
    {
        t->tm_year += t->tm_mon / 12;
        t->tm_mon %= 12;
    }
    while (t->tm_mday > __spm[1 + t->tm_mon])
    {
        if (t->tm_mon == 1 && __isleap(t->tm_year + 1900))
        {
            --t->tm_mday;
        }
        t->tm_mday -= __spm[t->tm_mon];
        ++t->tm_mon;
        if (t->tm_mon > 11)
        {
            t->tm_mon = 0;
            ++t->tm_year;
        }
    }

    if (t->tm_year < 70)
        return (time_t) - 1;

    /* Days since 1970 is 365 * number of years + number of leap years since 1970 */
    day = years * 365 + (years + 1) / 4;

    /* After 2100 we have to substract 3 leap years for every 400 years
     This is not intuitive. Most mktime implementations do not support
     dates after 2059, anyway, so we might leave this out for it's
     bloat. */
    if (years >= 131)
    {
        years -= 131;
        years /= 100;
        day -= (years >> 2) * 3 + 1;
        if ((years &= 3) == 3)
            years--;
        day -= years;
    }

    day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 +
                        (__isleap(t->tm_year + 1900) & (t->tm_mon > 1));

    /* day is now the number of days since 'Jan 1 1970' */
    i = 7;
    t->tm_wday = (day + 4) % i; /* Sunday=0, Monday=1, ..., Saturday=6 */

    i = 24;
    day *= i;
    i = 60;
    return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec;
}
RTM_EXPORT(timegm);

int gettimeofday(struct timeval *tv, struct timezone *tz)
{
    /* The use of the timezone structure is obsolete;
     * the tz argument should normally be specified as NULL.
     * The tz_dsttime field has never been used under Linux.
     * Thus, the following is purely of historic interest.
     */
    if(tz != RT_NULL)
    {
        tz->tz_dsttime = DST_NONE;
        tz->tz_minuteswest = -(tz_get() * 60);
    }

    if (tv != RT_NULL && get_timeval(tv) == RT_EOK)
    {
        return 0;
    }
    else
    {
        rt_set_errno(EFAULT);
        return -1;
    }
}
RTM_EXPORT(gettimeofday);

int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
    /* The use of the timezone structure is obsolete;
     * the tz argument should normally be specified as NULL.
     * The tz_dsttime field has never been used under Linux.
     * Thus, the following is purely of historic interest.
     */
    if (tv != RT_NULL
        && tv->tv_usec >= 0
        && set_timeval((struct timeval *)tv) == RT_EOK)
    {
        return 0;
    }
    else
    {
        rt_set_errno(EINVAL);
        return -1;
    }
}
RTM_EXPORT(settimeofday);

/* inherent in the toolchain */
RTM_EXPORT(difftime);
RTM_EXPORT(strftime);

#ifdef RT_USING_POSIX_DELAY
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
{
    sleep(rqtp->tv_sec);
    ndelay(rqtp->tv_nsec);
    return 0;
}
RTM_EXPORT(nanosleep);
#endif /* RT_USING_POSIX_DELAY */

#ifdef RT_USING_POSIX_CLOCK
#ifdef RT_USING_RTC
static volatile struct timeval _timevalue;
static int _rt_clock_time_system_init()
{
    register rt_base_t level;
    time_t time = 0;
    rt_tick_t tick;
    rt_device_t device;

    device = rt_device_find("rtc");
    if (device != RT_NULL)
    {
        /* get realtime seconds */
        if(rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time) == RT_EOK)
        {
            level = rt_hw_interrupt_disable();
            tick = rt_tick_get(); /* get tick */
            _timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
            _timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1;
            rt_hw_interrupt_enable(level);
            return 0;
        }
    }

    level = rt_hw_interrupt_disable();
    _timevalue.tv_usec = 0;
    _timevalue.tv_sec = 0;
    rt_hw_interrupt_enable(level);

    return -1;
}
INIT_COMPONENT_EXPORT(_rt_clock_time_system_init);
#endif /* RT_USING_RTC */

int clock_getres(clockid_t clockid, struct timespec *res)
{
#ifndef RT_USING_RTC
    LOG_W(_WARNING_NO_RTC);
    return -1;
#else
    int ret = 0;

    if (res == RT_NULL)
    {
        rt_set_errno(EINVAL);
        return -1;
    }

    switch (clockid)
    {
    case CLOCK_REALTIME:
        res->tv_sec = 0;
        res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND;
        break;

#ifdef RT_USING_CPUTIME
    case CLOCK_CPUTIME_ID:
        res->tv_sec  = 0;
        res->tv_nsec = clock_cpu_getres();
        break;
#endif

    default:
        ret = -1;
        rt_set_errno(EINVAL);
        break;
    }

    return ret;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_getres);

int clock_gettime(clockid_t clockid, struct timespec *tp)
{
#ifndef RT_USING_RTC
    LOG_W(_WARNING_NO_RTC);
    return -1;
#else
    int ret = 0;

    if (tp == RT_NULL)
    {
        rt_set_errno(EINVAL);
        return -1;
    }

    switch (clockid)
    {
    case CLOCK_REALTIME:
        {
            int tick;
            register rt_base_t level;

            level = rt_hw_interrupt_disable();
            tick = rt_tick_get(); /* get tick */
            tp->tv_sec  = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND;
            tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000;
            rt_hw_interrupt_enable(level);
        }
        break;

#ifdef RT_USING_CPUTIME
    case CLOCK_CPUTIME_ID:
        {
            float unit = 0;
            long long cpu_tick;

            unit = clock_cpu_getres();
            cpu_tick = clock_cpu_gettime();

            tp->tv_sec  = ((int)(cpu_tick * unit)) / NANOSECOND_PER_SECOND;
            tp->tv_nsec = ((int)(cpu_tick * unit)) % NANOSECOND_PER_SECOND;
        }
        break;
#endif
    default:
        rt_set_errno(EINVAL);
        ret = -1;
    }

    return ret;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_gettime);

int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, struct timespec *rmtp)
{
    if ((clockid != CLOCK_REALTIME) || (rqtp == RT_NULL))
    {
        rt_set_errno(EINVAL);
        return -1;
    }

    return nanosleep(rqtp, rmtp);
}

int clock_settime(clockid_t clockid, const struct timespec *tp)
{
#ifndef RT_USING_RTC
    LOG_W(_WARNING_NO_RTC);
    return -1;
#else
    register rt_base_t level;
    int second;
    rt_tick_t tick;
    rt_device_t device;

    if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL))
    {
        rt_set_errno(EINVAL);
        return -1;
    }

    /* get second */
    second = tp->tv_sec;

    level = rt_hw_interrupt_disable();
    tick = rt_tick_get(); /* get tick */
    /* update timevalue */
    _timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
    _timevalue.tv_sec = second - tick/RT_TICK_PER_SECOND - 1;
    rt_hw_interrupt_enable(level);

    /* update for RTC device */
    device = rt_device_find("rtc");
    if (device != RT_NULL)
    {
        /* set realtime seconds */
        if(rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second) == RT_EOK)
        {
            return 0;
        }
    }

    return -1;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_settime);

int rt_timespec_to_tick(const struct timespec *time)
{
    int tick;
    int nsecond, second;
    struct timespec tp;

    RT_ASSERT(time != RT_NULL);

    tick = RT_WAITING_FOREVER;
    if (time != NULL)
    {
        /* get current tp */
        clock_gettime(CLOCK_REALTIME, &tp);

        if ((time->tv_nsec - tp.tv_nsec) < 0)
        {
            nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec);
            second  = time->tv_sec - tp.tv_sec - 1;
        }
        else
        {
            nsecond = time->tv_nsec - tp.tv_nsec;
            second  = time->tv_sec - tp.tv_sec;
        }

        tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND;
        if (tick < 0) tick = 0;
    }

    return tick;
}
RTM_EXPORT(rt_timespec_to_tick);

#endif /* RT_USING_POSIX_CLOCK */

#ifdef RT_USING_POSIX_TIMER

#define ACTIVE 1
#define NOT_ACTIVE 0

struct timer_obj
{
    struct rt_timer timer;
    void (*sigev_notify_function)(union sigval val);
    union sigval val;
    struct timespec interval;              /* Reload value */
    rt_uint32_t reload;                    /* Reload value in ms */
    rt_uint32_t status;
};

static void rtthread_timer_wrapper(void *timerobj)
{
    struct timer_obj *timer;

    timer = (struct timer_obj *)timerobj;

    if (timer->reload == 0U)
    {
        timer->status = NOT_ACTIVE;
    }

    if(timer->sigev_notify_function != RT_NULL)
    {
        (timer->sigev_notify_function)(timer->val);
    }
}

/**
 * @brief Create a per-process timer.
 *
 * This API does not accept SIGEV_THREAD as valid signal event notification
 * type.
 *
 * See IEEE 1003.1
 */
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid)
{
    static int num = 0;
    struct timer_obj *timer;
    char timername[RT_NAME_MAX] = {0};

    if (clockid != CLOCK_MONOTONIC || evp == NULL ||
        (evp->sigev_notify != SIGEV_NONE &&
         evp->sigev_notify != SIGEV_SIGNAL))
    {
        rt_set_errno(EINVAL);
        return -RT_ERROR;
    }

    timer = rt_malloc(sizeof(struct timer_obj));
    if(timer == RT_NULL)
    {
        rt_set_errno(ENOMEM);
        return -RT_ENOMEM;
    }

    RT_ASSERT(evp->sigev_notify_function != RT_NULL);
    rt_snprintf(timername, RT_NAME_MAX, "psx_tm%02d", num++);
    num %= 100;
    timer->sigev_notify_function = evp->sigev_notify_function;
    timer->val = evp->sigev_value;
    timer->interval.tv_sec = 0;
    timer->interval.tv_nsec = 0;
    timer->reload = 0U;
    timer->status = NOT_ACTIVE;

    if (evp->sigev_notify == SIGEV_NONE)
    {
        rt_timer_init(&timer->timer, timername, RT_NULL, RT_NULL, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
    }
    else
    {
        rt_timer_init(&timer->timer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
    }

    *timerid = (timer_t)timer;

    return RT_EOK;
}
RTM_EXPORT(timer_create);

/**
 * @brief Delete a per-process timer.
 *
 * See IEEE 1003.1
 */
int timer_delete(timer_t timerid)
{
    struct timer_obj *timer = (struct timer_obj *)timerid;

    if (timer == RT_NULL)
    {
        rt_set_errno(EINVAL);
        return -RT_ERROR;
    }

    if (timer->status == ACTIVE)
    {
        timer->status = NOT_ACTIVE;
        rt_timer_stop(&timer->timer);
    }

    rt_free(timer);

    return RT_EOK;
}
RTM_EXPORT(timer_delete);

/**
 *
 *  Return the overrun count for the last timer expiration.
 *  It is subefficient to create a new structure to get overrun count.
 **/
int timer_getoverrun(timer_t timerid)
{
    rt_set_errno(ENOSYS);
    return -RT_ERROR;
}

/**
 * @brief Get amount of time left for expiration on a per-process timer.
 *
 * See IEEE 1003.1
 */
int timer_gettime(timer_t timerid, struct itimerspec *its)
{
    struct timer_obj *timer = (struct timer_obj *)timerid;
    rt_tick_t remaining;
    rt_uint32_t seconds, nanoseconds;

    if (timer == NULL)
    {
        rt_set_errno(EINVAL);
        return -RT_ERROR;
    }

    if (its == NULL)
    {
        rt_set_errno(EFAULT);
        return -RT_ERROR;
    }

    if (timer->status == ACTIVE)
    {
        rt_tick_t remain_tick;

        rt_timer_control(&timer->timer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);

        /* 'remain_tick' is minimum-unit in the RT-Thread' timer,
         * so the seconds, nanoseconds will be calculated by 'remain_tick'.
         */
        remaining = remain_tick - rt_tick_get();

        /* calculate 'second' */
        seconds = remaining / RT_TICK_PER_SECOND;

        /* calculate 'nanosecond';  To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
         *
         *        remain_tick                  millisecond                                 remain_tick * MILLISECOND_PER_SECOND
         *  ------------------------- = --------------------------  --->  millisecond = -------------------------------------------
         *    RT_TICK_PER_SECOND          MILLISECOND_PER_SECOND                                RT_TICK_PER_SECOND
         *
         *                    remain_tick * MILLISECOND_PER_SECOND                          remain_tick * MILLISECOND_PER_SECOND * MICROSECOND_PER_SECOND
         *   millisecond = ----------------------------------------  ---> nanosecond = -------------------------------------------------------------------
         *                         RT_TICK_PER_SECOND                                                           RT_TICK_PER_SECOND
         *
         */
        nanoseconds = (((remaining % RT_TICK_PER_SECOND) * MILLISECOND_PER_SECOND) * MICROSECOND_PER_SECOND) / RT_TICK_PER_SECOND ;

        its->it_value.tv_sec = (rt_int32_t)seconds;
        its->it_value.tv_nsec = (rt_int32_t)nanoseconds;
    }
    else
    {
        /* Timer is disarmed */
        its->it_value.tv_sec = 0;
        its->it_value.tv_nsec = 0;
    }

    /* The interval last set by timer_settime() */
    its->it_interval = timer->interval;
    return RT_EOK;
}
RTM_EXPORT(timer_gettime);

/**
 * @brief Sets expiration time of per-process timer.
 *
 * See IEEE 1003.1
 */
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
                  struct itimerspec *ovalue)
{
    struct timer_obj *timer = (struct timer_obj *)timerid;

    if (timer == NULL ||
        value->it_interval.tv_nsec < 0 ||
        value->it_interval.tv_nsec >= NANOSECOND_PER_SECOND ||
        value->it_value.tv_nsec < 0 ||
        value->it_value.tv_nsec >= NANOSECOND_PER_SECOND)
    {
        rt_set_errno(EINVAL);
        return -RT_ERROR;
    }

    if (value == NULL || ovalue == NULL)
    {
        rt_set_errno(EFAULT);
        return -RT_ERROR;
    }

    /*  Save time to expire and old reload value. */
    if (ovalue != NULL)
    {
        timer_gettime(timerid, ovalue);
    }

    /* Stop the timer if the value is 0 */
    if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0))
    {
        if (timer->status == ACTIVE)
        {
            rt_timer_stop(&timer->timer);
        }

        timer->status = NOT_ACTIVE;
        return RT_EOK;
    }

    /* calculate timer period(tick);  To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
        *
        *          tick                        nanosecond                          nanosecond * RT_TICK_PER_SECOND
        *  ------------------------- = --------------------------  --->  tick = -------------------------------------
        *    RT_TICK_PER_SECOND           NANOSECOND_PER_SECOND                         NANOSECOND_PER_SECOND
        *
        */
    timer->reload = (value->it_interval.tv_sec * RT_TICK_PER_SECOND) + (value->it_interval.tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
    timer->interval.tv_sec = value->it_interval.tv_sec;
    timer->interval.tv_nsec = value->it_interval.tv_nsec;

    if (timer->status == ACTIVE)
    {
        rt_timer_stop(&timer->timer);
    }

    timer->status = ACTIVE;
    rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, (void *)timer->reload);
    rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
    rt_timer_start(&timer->timer);

    return RT_EOK;
}
RTM_EXPORT(timer_settime);
#endif /* RT_USING_POSIX_TIMER */


/* timezone */
#ifndef RT_LIBC_DEFAULT_TIMEZONE
#define RT_LIBC_DEFAULT_TIMEZONE    8
#endif

static volatile int8_t _current_timezone = RT_LIBC_DEFAULT_TIMEZONE;

void tz_set(int8_t tz)
{
    register rt_base_t level;
    level = rt_hw_interrupt_disable();
    _current_timezone = tz;
    rt_hw_interrupt_enable(level);
}

int8_t tz_get(void)
{
    return _current_timezone;
}

int8_t tz_is_dst(void)
{
    return 0;
}