gicv3.c
25.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2013-07-20 Bernard first version
* 2014-04-03 Grissiom many enhancements
* 2018-11-22 Jesven add rt_hw_ipi_send()
* add rt_hw_ipi_handler_install()
* 2022-03-08 GuEe-GUI add BSP bind SPI CPU self support
* add GICv3 AArch64 system register interface
* modify arm_gic_redist_init() args
* modify arm_gic_cpu_init() args
* modify arm_gic_send_affinity_sgi() args
* remove arm_gic_redist_address_set()
* remove arm_gic_cpu_interface_address_set()
* remove arm_gic_secondary_cpu_init()
* remove get_main_cpu_affval()
* remove arm_gic_cpumask_to_affval()
*/
#include <rthw.h>
#include <rtthread.h>
#if defined(BSP_USING_GIC) && defined(BSP_USING_GICV3)
#include <gicv3.h>
#include <cpuport.h>
#include <board.h>
#ifndef ARM_SPI_BIND_CPU_ID
#define ARM_SPI_BIND_CPU_ID 0
#endif
#ifndef RT_USING_SMP
#define RT_CPUS_NR 1
extern int rt_hw_cpu_id(void);
#else
extern rt_uint64_t rt_cpu_mpidr_early[];
#endif /* RT_USING_SMP */
struct arm_gic
{
rt_uint64_t offset; /* the first interrupt index in the vector table */
rt_uint64_t redist_hw_base[RT_CPUS_NR]; /* the pointer of the gic redistributor */
rt_uint64_t dist_hw_base; /* the base address of the gic distributor */
rt_uint64_t cpu_hw_base[RT_CPUS_NR]; /* the base address of the gic cpu interface */
};
/* 'ARM_GIC_MAX_NR' is the number of cores */
static struct arm_gic _gic_table[ARM_GIC_MAX_NR];
static unsigned int _gic_max_irq;
#define GET_GICV3_REG(reg, out) __asm__ volatile ("mrs %0, " reg:"=r"(out)::"memory");
#define SET_GICV3_REG(reg, in) __asm__ volatile ("msr " reg ", %0"::"r"(in):"memory");
/* AArch64 System register interface to GICv3 */
#define ICC_IAR0_EL1 "S3_0_C12_C8_0"
#define ICC_IAR1_EL1 "S3_0_C12_C12_0"
#define ICC_EOIR0_EL1 "S3_0_C12_C8_1"
#define ICC_EOIR1_EL1 "S3_0_C12_C12_1"
#define ICC_HPPIR0_EL1 "S3_0_C12_C8_2"
#define ICC_HPPIR1_EL1 "S3_0_C12_C12_2"
#define ICC_BPR0_EL1 "S3_0_C12_C8_3"
#define ICC_BPR1_EL1 "S3_0_C12_C12_3"
#define ICC_DIR_EL1 "S3_0_C12_C11_1"
#define ICC_PMR_EL1 "S3_0_C4_C6_0"
#define ICC_RPR_EL1 "S3_0_C12_C11_3"
#define ICC_CTLR_EL1 "S3_0_C12_C12_4"
#define ICC_CTLR_EL3 "S3_6_C12_C12_4"
#define ICC_SRE_EL1 "S3_0_C12_C12_5"
#define ICC_SRE_EL2 "S3_4_C12_C9_5"
#define ICC_SRE_EL3 "S3_6_C12_C12_5"
#define ICC_IGRPEN0_EL1 "S3_0_C12_C12_6"
#define ICC_IGRPEN1_EL1 "S3_0_C12_C12_7"
#define ICC_IGRPEN1_EL3 "S3_6_C12_C12_7"
#define ICC_SGI0R_EL1 "S3_0_C12_C11_7"
#define ICC_SGI1R_EL1 "S3_0_C12_C11_5"
#define ICC_ASGI1R_EL1 "S3_0_C12_C11_6"
/* Macro to access the Distributor Control Register (GICD_CTLR) */
#define GICD_CTLR_RWP (1 << 31)
#define GICD_CTLR_E1NWF (1 << 7)
#define GICD_CTLR_DS (1 << 6)
#define GICD_CTLR_ARE_NS (1 << 5)
#define GICD_CTLR_ARE_S (1 << 4)
#define GICD_CTLR_ENGRP1S (1 << 2)
#define GICD_CTLR_ENGRP1NS (1 << 1)
#define GICD_CTLR_ENGRP0 (1 << 0)
/* Macro to access the Redistributor Control Register (GICR_CTLR) */
#define GICR_CTLR_UWP (1 << 31)
#define GICR_CTLR_DPG1S (1 << 26)
#define GICR_CTLR_DPG1NS (1 << 25)
#define GICR_CTLR_DPG0 (1 << 24)
#define GICR_CTLR_RWP (1 << 3)
#define GICR_CTLR_IR (1 << 2)
#define GICR_CTLR_CES (1 << 1)
#define GICR_CTLR_EnableLPI (1 << 0)
/* Macro to access the Generic Interrupt Controller Interface (GICC) */
#define GIC_CPU_CTRL(hw_base) HWREG32((hw_base) + 0x00U)
#define GIC_CPU_PRIMASK(hw_base) HWREG32((hw_base) + 0x04U)
#define GIC_CPU_BINPOINT(hw_base) HWREG32((hw_base) + 0x08U)
#define GIC_CPU_INTACK(hw_base) HWREG32((hw_base) + 0x0cU)
#define GIC_CPU_EOI(hw_base) HWREG32((hw_base) + 0x10U)
#define GIC_CPU_RUNNINGPRI(hw_base) HWREG32((hw_base) + 0x14U)
#define GIC_CPU_HIGHPRI(hw_base) HWREG32((hw_base) + 0x18U)
#define GIC_CPU_IIDR(hw_base) HWREG32((hw_base) + 0xFCU)
/* Macro to access the Generic Interrupt Controller Distributor (GICD) */
#define GIC_DIST_CTRL(hw_base) HWREG32((hw_base) + 0x000U)
#define GIC_DIST_TYPE(hw_base) HWREG32((hw_base) + 0x004U)
#define GIC_DIST_IGROUP(hw_base, n) HWREG32((hw_base) + 0x080U + ((n) / 32U) * 4U)
#define GIC_DIST_ENABLE_SET(hw_base, n) HWREG32((hw_base) + 0x100U + ((n) / 32U) * 4U)
#define GIC_DIST_ENABLE_CLEAR(hw_base, n) HWREG32((hw_base) + 0x180U + ((n) / 32U) * 4U)
#define GIC_DIST_PENDING_SET(hw_base, n) HWREG32((hw_base) + 0x200U + ((n) / 32U) * 4U)
#define GIC_DIST_PENDING_CLEAR(hw_base, n) HWREG32((hw_base) + 0x280U + ((n) / 32U) * 4U)
#define GIC_DIST_ACTIVE_SET(hw_base, n) HWREG32((hw_base) + 0x300U + ((n) / 32U) * 4U)
#define GIC_DIST_ACTIVE_CLEAR(hw_base, n) HWREG32((hw_base) + 0x380U + ((n) / 32U) * 4U)
#define GIC_DIST_PRI(hw_base, n) HWREG32((hw_base) + 0x400U + ((n) / 4U) * 4U)
#define GIC_DIST_TARGET(hw_base, n) HWREG32((hw_base) + 0x800U + ((n) / 4U) * 4U)
#define GIC_DIST_CONFIG(hw_base, n) HWREG32((hw_base) + 0xc00U + ((n) / 16U) * 4U)
#define GIC_DIST_SOFTINT(hw_base) HWREG32((hw_base) + 0xf00U)
#define GIC_DIST_CPENDSGI(hw_base, n) HWREG32((hw_base) + 0xf10U + ((n) / 4U) * 4U)
#define GIC_DIST_SPENDSGI(hw_base, n) HWREG32((hw_base) + 0xf20U + ((n) / 4U) * 4U)
#define GIC_DIST_ICPIDR2(hw_base) HWREG32((hw_base) + 0xfe8U)
#define GIC_DIST_IROUTER(hw_base, n) HWREG64((hw_base) + 0x6000U + (n) * 8U)
/* SGI base address is at 64K offset from Redistributor base address */
#define GIC_RSGI_OFFSET 0x10000
/* Macro to access the Generic Interrupt Controller Redistributor (GICR) */
#define GIC_RDIST_CTRL(hw_base) HWREG32((hw_base) + 0x000U)
#define GIC_RDIST_IIDR(hw_base) HWREG32((hw_base) + 0x004U)
#define GIC_RDIST_TYPER(hw_base) HWREG64((hw_base) + 0x008U)
#define GIC_RDIST_TSTATUSR(hw_base) HWREG32((hw_base) + 0x010U)
#define GIC_RDIST_WAKER(hw_base) HWREG32((hw_base) + 0x014U)
#define GIC_RDIST_SETLPIR(hw_base) HWREG32((hw_base) + 0x040U)
#define GIC_RDIST_CLRLPIR(hw_base) HWREG32((hw_base) + 0x048U)
#define GIC_RDIST_PROPBASER(hw_base) HWREG32((hw_base) + 0x070U)
#define GIC_RDIST_PENDBASER(hw_base) HWREG32((hw_base) + 0x078U)
#define GIC_RDIST_INVLPIR(hw_base) HWREG32((hw_base) + 0x0A0U)
#define GIC_RDIST_INVALLR(hw_base) HWREG32((hw_base) + 0x0B0U)
#define GIC_RDIST_SYNCR(hw_base) HWREG32((hw_base) + 0x0C0U)
#define GIC_RDISTSGI_IGROUPR0(hw_base, n) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x080U + (n) * 4U)
#define GIC_RDISTSGI_ISENABLER0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x100U)
#define GIC_RDISTSGI_ICENABLER0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x180U)
#define GIC_RDISTSGI_ISPENDR0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x200U)
#define GIC_RDISTSGI_ICPENDR0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x280U)
#define GIC_RDISTSGI_ISACTIVER0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x300U)
#define GIC_RDISTSGI_ICACTIVER0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x380U)
#define GIC_RDISTSGI_IPRIORITYR(hw_base, n) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0x400U + ((n) / 4U) * 4U)
#define GIC_RDISTSGI_ICFGR0(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0xC00U)
#define GIC_RDISTSGI_ICFGR1(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0xC04U)
#define GIC_RDISTSGI_IGRPMODR0(hw_base, n) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0xD00U + (n) * 4)
#define GIC_RDISTSGI_NSACR(hw_base) HWREG32((hw_base) + GIC_RSGI_OFFSET + 0xE00U)
int arm_gic_get_active_irq(rt_uint64_t index)
{
int irq;
RT_ASSERT(index < ARM_GIC_MAX_NR);
GET_GICV3_REG(ICC_IAR1_EL1, irq);
irq = (irq & 0x1ffffff) + _gic_table[index].offset;
return irq;
}
void arm_gic_ack(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
RT_ASSERT(irq >= 0);
__DSB();
SET_GICV3_REG(ICC_EOIR1_EL1, irq);
}
void arm_gic_mask(rt_uint64_t index, int irq)
{
rt_uint64_t mask = 1 << (irq % 32);
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq < 32)
{
rt_int32_t cpu_id = rt_hw_cpu_id();
GIC_RDISTSGI_ICENABLER0(_gic_table[index].redist_hw_base[cpu_id]) = mask;
}
else
{
GIC_DIST_ENABLE_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
}
}
void arm_gic_umask(rt_uint64_t index, int irq)
{
rt_uint64_t mask = 1 << (irq % 32);
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq < 32)
{
rt_int32_t cpu_id = rt_hw_cpu_id();
GIC_RDISTSGI_ISENABLER0(_gic_table[index].redist_hw_base[cpu_id]) = mask;
}
else
{
GIC_DIST_ENABLE_SET(_gic_table[index].dist_hw_base, irq) = mask;
}
}
rt_uint64_t arm_gic_get_pending_irq(rt_uint64_t index, int irq)
{
rt_uint64_t pend;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq >= 16)
{
pend = (GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32)) & 0x1;
}
else
{
/* INTID 0-15 Software Generated Interrupt */
pend = (GIC_DIST_SPENDSGI(_gic_table[index].dist_hw_base, irq) >> ((irq % 4) * 8)) & 0xff;
/* No CPU identification offered */
if (pend != 0)
{
pend = 1;
}
else
{
pend = 0;
}
}
return pend;
}
void arm_gic_set_pending_irq(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq >= 16)
{
GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) = 1 << (irq % 32);
}
else
{
/* INTID 0-15 Software Generated Interrupt */
/* Forward the interrupt to the CPU interface that requested it */
GIC_DIST_SOFTINT(_gic_table[index].dist_hw_base) = (irq | 0x02000000);
}
}
void arm_gic_clear_pending_irq(rt_uint64_t index, int irq)
{
rt_uint64_t mask;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq >= 16)
{
mask = 1 << (irq % 32);
GIC_DIST_PENDING_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
}
else
{
mask = 1 << ((irq % 4) * 8);
GIC_DIST_CPENDSGI(_gic_table[index].dist_hw_base, irq) = mask;
}
}
void arm_gic_set_configuration(rt_uint64_t index, int irq, rt_uint32_t config)
{
rt_uint64_t icfgr;
rt_uint64_t shift;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
icfgr = GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq);
shift = (irq % 16) << 1;
icfgr &= (~(3 << shift));
icfgr |= (config << shift);
GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq) = icfgr;
}
rt_uint64_t arm_gic_get_configuration(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
return (GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq) >> ((irq % 16) >> 1));
}
void arm_gic_clear_active(rt_uint64_t index, int irq)
{
rt_uint64_t mask = 1 << (irq % 32);
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
GIC_DIST_ACTIVE_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
}
/* Set up the cpu mask for the specific interrupt */
void arm_gic_set_cpu(rt_uint64_t index, int irq, unsigned int cpumask)
{
rt_uint64_t old_tgt;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
old_tgt = GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq);
old_tgt &= ~(0x0ff << ((irq % 4) * 8));
old_tgt |= cpumask << ((irq % 4) * 8);
GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq) = old_tgt;
}
rt_uint64_t arm_gic_get_target_cpu(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
return (GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq) >> ((irq % 4) * 8)) & 0xff;
}
void arm_gic_set_priority(rt_uint64_t index, int irq, rt_uint64_t priority)
{
rt_uint64_t mask;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq < 32)
{
rt_int32_t cpu_id = rt_hw_cpu_id();
mask = GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq);
mask &= ~(0xff << ((irq % 4) * 8));
mask |= ((priority & 0xff) << ((irq % 4) * 8));
GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq) = mask;
}
else
{
mask = GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq);
mask &= ~(0xff << ((irq % 4) * 8));
mask |= ((priority & 0xff) << ((irq % 4) * 8));
GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq) = mask;
}
}
rt_uint64_t arm_gic_get_priority(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
if (irq < 32)
{
rt_int32_t cpu_id = rt_hw_cpu_id();
return (GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq) >> ((irq % 4) * 8)) & 0xff;
}
else
{
return (GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq) >> ((irq % 4) * 8)) & 0xff;
}
}
void arm_gic_set_system_register_enable_mask(rt_uint64_t index, rt_uint64_t value)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
value &= 0xff;
/* set priority mask */
SET_GICV3_REG(ICC_SRE_EL1, value);
__ISB();
}
rt_uint64_t arm_gic_get_system_register_enable_mask(rt_uint64_t index)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
rt_uint64_t value;
GET_GICV3_REG(ICC_SRE_EL1, value);
return value;
}
void arm_gic_set_interface_prior_mask(rt_uint64_t index, rt_uint64_t priority)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
priority &= 0xff;
/* set priority mask */
SET_GICV3_REG(ICC_PMR_EL1, priority);
}
rt_uint64_t arm_gic_get_interface_prior_mask(rt_uint64_t index)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
rt_uint64_t priority;
GET_GICV3_REG(ICC_PMR_EL1, priority);
return priority;
}
void arm_gic_set_binary_point(rt_uint64_t index, rt_uint64_t binary_point)
{
index = index;
binary_point &= 0x7;
SET_GICV3_REG(ICC_BPR1_EL1, binary_point);
}
rt_uint64_t arm_gic_get_binary_point(rt_uint64_t index)
{
rt_uint64_t binary_point;
index = index;
GET_GICV3_REG(ICC_BPR1_EL1, binary_point);
return binary_point;
}
rt_uint64_t arm_gic_get_irq_status(rt_uint64_t index, int irq)
{
rt_uint64_t pending, active;
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
active = (GIC_DIST_ACTIVE_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32)) & 0x1;
pending = (GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32)) & 0x1;
return ((active << 1) | pending);
}
#ifdef RT_USING_SMP
void arm_gic_send_affinity_sgi(rt_uint64_t index, int irq, rt_uint64_t cpu_masks[], rt_uint64_t routing_mode)
{
const int cpu_mask_cpu_max_nr = sizeof(cpu_masks[0]) * 8;
rt_uint64_t int_id = (irq & 0xf) << 24;
rt_uint64_t irm = routing_mode << 40; /* Interrupt Routing Mode */
if (routing_mode == GICV3_ROUTED_TO_SPEC)
{
int cpu_id, cpu_mask_bit, i, cpu_masks_nr = RT_CPUS_NR / cpu_mask_cpu_max_nr;
rt_uint16_t target_list;
rt_uint64_t rs = 0; /* Range Selector */
rt_uint64_t affinity_val, next_affinity_val;
if (cpu_masks_nr * cpu_mask_cpu_max_nr != RT_CPUS_NR)
{
++cpu_masks_nr;
}
for (i = cpu_id = 0; i < cpu_masks_nr;)
{
/* No cpu in this mask */
if (cpu_masks[i] == 0)
{
++i;
cpu_id += cpu_mask_cpu_max_nr;
continue;
}
/* Get last cpu affinity value */
affinity_val = rt_cpu_mpidr_early[cpu_id] & 0xff00ffff00ULL;
/* Read 16 cpus information */
for (cpu_mask_bit = 0; cpu_mask_bit < 16; ++cpu_mask_bit, ++cpu_id)
{
/* MPIDR_EL1: aff3[39:32], aff2[23:16], aff1[15:8] */
next_affinity_val = rt_cpu_mpidr_early[cpu_id] & 0xff00ffff00ULL;
/* Affinity value is different, read end */
if (affinity_val != next_affinity_val)
{
break;
}
}
/* Get all valid cpu mask */
target_list = (0xffff >> (16 - cpu_mask_bit)) & cpu_masks[i];
/* Clear read mask */
cpu_masks[i] >>= cpu_mask_bit;
/* ICC_SGI1R_EL1: aff3[55:48], aff2[39:32], aff1[23:16] */
affinity_val <<= 8;
__DSB();
/* Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>. */
SET_GICV3_REG(ICC_SGI1R_EL1, affinity_val | (rs << 44) | irm | int_id | target_list);
__ISB();
/* Check if reset the range selector */
rs = affinity_val != next_affinity_val ? 0 : rs + 1;
}
}
else
{
__DSB();
/* Interrupts routed to all PEs in the system, excluding "self". */
SET_GICV3_REG(ICC_SGI1R_EL1, irm | int_id);
__ISB();
}
}
#endif /* RT_USING_SMP */
rt_uint64_t arm_gic_get_high_pending_irq(rt_uint64_t index)
{
rt_uint64_t irq;
RT_ASSERT(index < ARM_GIC_MAX_NR);
index = index;
GET_GICV3_REG(ICC_HPPIR1_EL1, irq);
return irq;
}
rt_uint64_t arm_gic_get_interface_id(rt_uint64_t index)
{
rt_uint64_t ret = 0;
RT_ASSERT(index < ARM_GIC_MAX_NR);
if (_gic_table[index].cpu_hw_base != RT_NULL)
{
ret = GIC_CPU_IIDR(_gic_table[index].cpu_hw_base);
}
return ret;
}
void arm_gic_set_group(rt_uint64_t index, int irq, rt_uint64_t group)
{
rt_uint64_t igroupr;
rt_uint64_t shift;
RT_ASSERT(index < ARM_GIC_MAX_NR);
RT_ASSERT(group <= 1);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
igroupr = GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq);
shift = (irq % 32);
igroupr &= (~(1U << shift));
igroupr |= ((group & 0x1U) << shift);
GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq) = igroupr;
}
rt_uint64_t arm_gic_get_group(rt_uint64_t index, int irq)
{
RT_ASSERT(index < ARM_GIC_MAX_NR);
irq = irq - _gic_table[index].offset;
RT_ASSERT(irq >= 0);
return (GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq) >> (irq % 32)) & 0x1UL;
}
static int arm_gicv3_wait_rwp(rt_uint64_t index, rt_uint64_t irq)
{
rt_uint64_t rwp_bit;
rt_uint64_t base;
RT_ASSERT(index < ARM_GIC_MAX_NR);
if (irq < 32)
{
rt_int32_t cpu_id = rt_hw_cpu_id();
base = _gic_table[index].redist_hw_base[cpu_id];
rwp_bit = GICR_CTLR_RWP;
}
else
{
base = _gic_table[index].dist_hw_base;
rwp_bit = GICD_CTLR_RWP;
}
while (HWREG32(base) & rwp_bit)
{
}
return 0;
}
int arm_gic_dist_init(rt_uint64_t index, rt_uint64_t dist_base, int irq_start)
{
int i;
unsigned int gic_type;
rt_uint64_t main_cpu_affinity_val;
RT_ASSERT(index < ARM_GIC_MAX_NR);
_gic_table[index].dist_hw_base = dist_base;
_gic_table[index].offset = irq_start;
/* Find out how many interrupts are supported. */
gic_type = GIC_DIST_TYPE(dist_base);
_gic_max_irq = ((gic_type & 0x1f) + 1) * 32;
/*
* The GIC only supports up to 1020 interrupt sources.
* Limit this to either the architected maximum, or the
* platform maximum.
*/
if (_gic_max_irq > 1020)
{
_gic_max_irq = 1020;
}
if (_gic_max_irq > ARM_GIC_NR_IRQS) /* the platform maximum interrupts */
{
_gic_max_irq = ARM_GIC_NR_IRQS;
}
GIC_DIST_CTRL(dist_base) = 0;
/* Wait for register write pending */
arm_gicv3_wait_rwp(0, 32);
/* Set all global interrupts to be level triggered, active low. */
for (i = 32; i < _gic_max_irq; i += 16)
{
GIC_DIST_CONFIG(dist_base, i) = 0;
}
arm_gicv3_wait_rwp(0, 32);
#ifdef RT_USING_SMP
main_cpu_affinity_val = rt_cpu_mpidr_early[ARM_SPI_BIND_CPU_ID];
#else
__asm__ volatile ("mrs %0, mpidr_el1":"=r"(main_cpu_affinity_val));
#endif
/* aff3[39:32], aff2[23:16], aff1[15:8], aff0[7:0] */
main_cpu_affinity_val &= 0xff00ffffffULL;
/* Set all global interrupts to this CPU only. */
for (i = 32; i < _gic_max_irq; i++)
{
GIC_DIST_IROUTER(dist_base, i) = main_cpu_affinity_val | (GICV3_ROUTED_TO_SPEC << 31);
}
arm_gicv3_wait_rwp(0, 32);
/* Set priority on spi interrupts. */
for (i = 32; i < _gic_max_irq; i += 4)
{
GIC_DIST_PRI(dist_base, i) = 0xa0a0a0a0;
}
arm_gicv3_wait_rwp(0, 32);
/* Disable all interrupts. */
for (i = 0; i < _gic_max_irq; i += 32)
{
GIC_DIST_PENDING_CLEAR(dist_base, i) = 0xffffffff;
GIC_DIST_ENABLE_CLEAR(dist_base, i) = 0xffffffff;
}
arm_gicv3_wait_rwp(0, 32);
/* All interrupts defaults to IGROUP1(IRQ). */
for (i = 0; i < _gic_max_irq; i += 32)
{
GIC_DIST_IGROUP(dist_base, i) = 0xffffffff;
}
arm_gicv3_wait_rwp(0, 32);
/*
* The Distributor control register (GICD_CTLR) must be configured to enable the interrupt groups and to set the routing mode.
* Enable Affinity routing (ARE bits) The ARE bits in GICD_CTLR control whether affinity routing is enabled.
* If affinity routing is not enabled, GICv3 can be configured for legacy operation.
* Whether affinity routing is enabled or not can be controlled separately for Secure and Non-secure state.
* Enables GICD_CTLR contains separate enable bits for Group 0, Secure Group 1 and Non-secure Group 1:
* GICD_CTLR.EnableGrp1S enables distribution of Secure Group 1 interrupts.
* GICD_CTLR.EnableGrp1NS enables distribution of Non-secure Group 1 interrupts.
* GICD_CTLR.EnableGrp0 enables distribution of Group 0 interrupts.
*/
GIC_DIST_CTRL(dist_base) = GICD_CTLR_ARE_NS | GICD_CTLR_ENGRP1NS;
return 0;
}
int arm_gic_redist_init(rt_uint64_t index, rt_uint64_t redist_base)
{
int i;
int cpu_id = rt_hw_cpu_id();
RT_ASSERT(index < ARM_GIC_MAX_NR);
redist_base += cpu_id * (2 << 16);
_gic_table[index].redist_hw_base[cpu_id] = redist_base;
/* redistributor enable */
GIC_RDIST_WAKER(redist_base) &= ~(1 << 1);
while (GIC_RDIST_WAKER(redist_base) & (1 << 2))
{
}
/* Disable all sgi and ppi interrupt */
GIC_RDISTSGI_ICENABLER0(redist_base) = 0xffffffff;
arm_gicv3_wait_rwp(0, 0);
/* Clear all inetrrupt pending */
GIC_RDISTSGI_ICPENDR0(redist_base) = 0xffffffff;
/* the corresponding interrupt is Group 1 or Non-secure Group 1. */
GIC_RDISTSGI_IGROUPR0(redist_base, 0) = 0xffffffff;
GIC_RDISTSGI_IGRPMODR0(redist_base, 0) = 0xffffffff;
/* Configure default priorities for SGI 0:15 and PPI 16:31. */
for (i = 0; i < 32; i += 4)
{
GIC_RDISTSGI_IPRIORITYR(redist_base, i) = 0xa0a0a0a0U;
}
/* Trigger level for PPI interrupts*/
GIC_RDISTSGI_ICFGR1(redist_base) = 0;
return 0;
}
int arm_gic_cpu_init(rt_uint64_t index, rt_uint64_t cpu_base)
{
rt_uint64_t value;
int cpu_id = rt_hw_cpu_id();
RT_ASSERT(index < ARM_GIC_MAX_NR);
_gic_table[index].cpu_hw_base[cpu_id] = cpu_base;
value = arm_gic_get_system_register_enable_mask(index);
value |= (1 << 0);
arm_gic_set_system_register_enable_mask(index, value);
SET_GICV3_REG(ICC_CTLR_EL1, 0);
arm_gic_set_interface_prior_mask(index, 0xff);
/* Enable group1 interrupt */
value = 1;
SET_GICV3_REG(ICC_IGRPEN1_EL1, value);
arm_gic_set_binary_point(0, 0);
/* ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1 interrupts. */
value = 1; /* ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1 interrupts.*/
value |= 1 << 18; /* Targeted SGIs with affinity level 0 values of 0 - 255 are supported. */
SET_GICV3_REG(ICC_CTLR_EL1, value);
return 0;
}
void arm_gic_dump_type(rt_uint64_t index)
{
unsigned int gic_type;
gic_type = GIC_DIST_TYPE(_gic_table[index].dist_hw_base);
rt_kprintf("GICv%d on %p, max IRQs: %d, %s security extension(%08x)\n",
(GIC_DIST_ICPIDR2(_gic_table[index].dist_hw_base) >> 4) & 0xf,
_gic_table[index].dist_hw_base,
_gic_max_irq,
gic_type & (1 << 10) ? "has" : "no",
gic_type);
}
void arm_gic_dump(rt_uint64_t index)
{
int i;
unsigned int val;
val = arm_gic_get_high_pending_irq(0);
rt_kprintf("--- high pending priority: %d(%08x)\n", val, val);
rt_kprintf("--- hw mask ---\n");
for (i = 0; i < _gic_max_irq / 32; ++i)
{
rt_kprintf("0x%08x, ", GIC_DIST_ENABLE_SET(_gic_table[index].dist_hw_base, i * 32));
}
rt_kprintf("\b\b\n--- hw pending ---\n");
for (i = 0; i < _gic_max_irq / 32; ++i)
{
rt_kprintf("0x%08x, ", GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, i * 32));
}
rt_kprintf("\b\b\n--- hw active ---\n");
for (i = 0; i < _gic_max_irq / 32; ++i)
{
rt_kprintf("0x%08x, ", GIC_DIST_ACTIVE_SET(_gic_table[index].dist_hw_base, i * 32));
}
rt_kprintf("\b\b\n");
}
long gic_dump(void)
{
arm_gic_dump_type(0);
arm_gic_dump(0);
return 0;
}
MSH_CMD_EXPORT(gic_dump, show gic status);
#endif /* defined(BSP_USING_GIC) && defined(BSP_USING_GICV3) */