csi_simd.h
71.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file csi_simd.h
* @brief CSI Single Instruction Multiple Data (SIMD) Header File for GCC.
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#ifndef _CSI_SIMD_H_
#define _CSI_SIMD_H_
/**
\brief Halfword packing instruction. Combines bits[15:0] of val1 with bits[31:16]
of val2 levitated with the val3.
\details Combine a halfword from one register with a halfword from another register.
The second argument can be left-shifted before extraction of the halfword.
\param [in] val1 first 16-bit operands
\param [in] val2 second 16-bit operands
\param [in] val3 value for left-shifting val2. Value range [0..31].
\return the combination of halfwords.
\remark
res[15:0] = val1[15:0] \n
res[31:16] = val2[31:16] << val3
*/
__ALWAYS_INLINE uint32_t __PKHBT(uint32_t val1, uint32_t val2, uint32_t val3)
{
return ((((int32_t)(val1) << 0) & (int32_t)0x0000FFFF) | (((int32_t)(val2) << val3) & (int32_t)0xFFFF0000));
}
/**
\brief Halfword packing instruction. Combines bits[31:16] of val1 with bits[15:0]
of val2 right-shifted with the val3.
\details Combine a halfword from one register with a halfword from another register.
The second argument can be right-shifted before extraction of the halfword.
\param [in] val1 first 16-bit operands
\param [in] val2 second 16-bit operands
\param [in] val3 value for right-shifting val2. Value range [1..32].
\return the combination of halfwords.
\remark
res[15:0] = val2[15:0] >> val3 \n
res[31:16] = val1[31:16]
*/
__ALWAYS_INLINE uint32_t __PKHTB(uint32_t val1, uint32_t val2, uint32_t val3)
{
return ((((int32_t)(val1) << 0) & (int32_t)0xFFFF0000) | (((int32_t)(val2) >> val3) & (int32_t)0x0000FFFF));
}
/**
\brief Dual 16-bit signed saturate.
\details This function saturates a signed value.
\param [in] x two signed 16-bit values to be saturated.
\param [in] y bit position for saturation, an integral constant expression in the range 1 to 16.
\return the sum of the absolute differences of the following bytes, added to the accumulation value:\n
the signed saturation of the low halfword in val1, saturated to the bit position specified in
val2 and returned in the low halfword of the return value.\n
the signed saturation of the high halfword in val1, saturated to the bit position specified in
val2 and returned in the high halfword of the return value.
*/
__ALWAYS_INLINE uint32_t __SSAT16(int32_t x, const uint32_t y)
{
int32_t r = 0, s = 0;
r = __SSAT((((int32_t)x << 16) >> 16), y) & (int32_t)0x0000FFFF;
s = __SSAT((((int32_t)x) >> 16), y) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned saturate.
\details This function enables you to saturate two signed 16-bit values to a selected unsigned range.
\param [in] x two signed 16-bit values to be saturated.
\param [in] y bit position for saturation, an integral constant expression in the range 1 to 16.
\return the saturation of the two signed 16-bit values, as non-negative values:
the saturation of the low halfword in val1, saturated to the bit position specified in
val2 and returned in the low halfword of the return value.\n
the saturation of the high halfword in val1, saturated to the bit position specified in
val2 and returned in the high halfword of the return value.
*/
__ALWAYS_INLINE uint32_t __USAT16(uint32_t x, const uint32_t y)
{
int32_t r = 0, s = 0;
r = __IUSAT(((x << 16) >> 16), y) & 0x0000FFFF;
s = __IUSAT(((x) >> 16), y) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Quad 8-bit saturating addition.
\details This function enables you to perform four 8-bit integer additions,
saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the saturated addition of the first byte of each operand in the first byte of the return value.\n
the saturated addition of the second byte of each operand in the second byte of the return value.\n
the saturated addition of the third byte of each operand in the third byte of the return value.\n
the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
\remark
res[7:0] = val1[7:0] + val2[7:0] \n
res[15:8] = val1[15:8] + val2[15:8] \n
res[23:16] = val1[23:16] + val2[23:16] \n
res[31:24] = val1[31:24] + val2[31:24]
*/
__ALWAYS_INLINE uint32_t __QADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = __SSAT(((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
s = __SSAT(((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
t = __SSAT(((((int32_t)x << 8) >> 24) + (((int32_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
u = __SSAT(((((int32_t)x) >> 24) + (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned saturating addition.
\details This function enables you to perform four unsigned 8-bit integer additions,
saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the saturated addition of the first byte of each operand in the first byte of the return value.\n
the saturated addition of the second byte of each operand in the second byte of the return value.\n
the saturated addition of the third byte of each operand in the third byte of the return value.\n
the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
The returned results are saturated to the 8-bit signed integer range 0 <= x <= 2^8 - 1.
\remark
res[7:0] = val1[7:0] + val2[7:0] \n
res[15:8] = val1[15:8] + val2[15:8] \n
res[23:16] = val1[23:16] + val2[23:16] \n
res[31:24] = val1[31:24] + val2[31:24]
*/
__ALWAYS_INLINE uint32_t __UQADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = __IUSAT((((x << 24) >> 24) + ((y << 24) >> 24)), 8) & 0x000000FF;
s = __IUSAT((((x << 16) >> 24) + ((y << 16) >> 24)), 8) & 0x000000FF;
t = __IUSAT((((x << 8) >> 24) + ((y << 8) >> 24)), 8) & 0x000000FF;
u = __IUSAT((((x) >> 24) + ((y) >> 24)), 8) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Quad 8-bit signed addition.
\details This function performs four 8-bit signed integer additions.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the addition of the first bytes from each operand, in the first byte of the return value.\n
the addition of the second bytes of each operand, in the second byte of the return value.\n
the addition of the third bytes of each operand, in the third byte of the return value.\n
the addition of the fourth bytes of each operand, in the fourth byte of the return value.
\remark
res[7:0] = val1[7:0] + val2[7:0] \n
res[15:8] = val1[15:8] + val2[15:8] \n
res[23:16] = val1[23:16] + val2[23:16] \n
res[31:24] = val1[31:24] + val2[31:24]
*/
__ALWAYS_INLINE uint32_t __SADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = ((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
s = ((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
t = ((((int32_t)x << 8) >> 24) + (((int32_t)y << 8) >> 24)) & (int32_t)0x000000FF;
u = ((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned addition.
\details This function performs four unsigned 8-bit integer additions.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the addition of the first bytes from each operand, in the first byte of the return value.\n
the addition of the second bytes of each operand, in the second byte of the return value.\n
the addition of the third bytes of each operand, in the third byte of the return value.\n
the addition of the fourth bytes of each operand, in the fourth byte of the return value.
\remark
res[7:0] = val1[7:0] + val2[7:0] \n
res[15:8] = val1[15:8] + val2[15:8] \n
res[23:16] = val1[23:16] + val2[23:16] \n
res[31:24] = val1[31:24] + val2[31:24]
*/
__ALWAYS_INLINE uint32_t __UADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = (((x << 24) >> 24) + ((y << 24) >> 24)) & 0x000000FF;
s = (((x << 16) >> 24) + ((y << 16) >> 24)) & 0x000000FF;
t = (((x << 8) >> 24) + ((y << 8) >> 24)) & 0x000000FF;
u = (((x) >> 24) + ((y) >> 24)) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Quad 8-bit saturating subtract.
\details This function enables you to perform four 8-bit integer subtractions,
saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the subtraction of the first byte of each operand in the first byte of the return value.\n
the subtraction of the second byte of each operand in the second byte of the return value.\n
the subtraction of the third byte of each operand in the third byte of the return value.\n
the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
\remark
res[7:0] = val1[7:0] - val2[7:0] \n
res[15:8] = val1[15:8] - val2[15:8] \n
res[23:16] = val1[23:16] - val2[23:16] \n
res[31:24] = val1[31:24] - val2[31:24]
*/
__ALWAYS_INLINE uint32_t __QSUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = __SSAT(((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
s = __SSAT(((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
t = __SSAT(((((int32_t)x << 8) >> 24) - (((int32_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
u = __SSAT(((((int32_t)x) >> 24) - (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned saturating subtraction.
\details This function enables you to perform four unsigned 8-bit integer subtractions,
saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the subtraction of the first byte of each operand in the first byte of the return value.\n
the subtraction of the second byte of each operand in the second byte of the return value.\n
the subtraction of the third byte of each operand in the third byte of the return value.\n
the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
The returned results are saturated to the 8-bit unsigned integer range 0 <= x <= 2^8 - 1.
\remark
res[7:0] = val1[7:0] - val2[7:0] \n
res[15:8] = val1[15:8] - val2[15:8] \n
res[23:16] = val1[23:16] - val2[23:16] \n
res[31:24] = val1[31:24] - val2[31:24]
*/
__ALWAYS_INLINE uint32_t __UQSUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = __IUSAT((((x << 24) >> 24) - ((y << 24) >> 24)), 8) & 0x000000FF;
s = __IUSAT((((x << 16) >> 24) - ((y << 16) >> 24)), 8) & 0x000000FF;
t = __IUSAT((((x << 8) >> 24) - ((y << 8) >> 24)), 8) & 0x000000FF;
u = __IUSAT((((x) >> 24) - ((y) >> 24)), 8) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Quad 8-bit signed subtraction.
\details This function enables you to perform four 8-bit signed integer subtractions.
\param [in] x first four 8-bit operands of each subtraction.
\param [in] y second four 8-bit operands of each subtraction.
\return the subtraction of the first bytes from each operand, in the first byte of the return value.\n
the subtraction of the second bytes of each operand, in the second byte of the return value.\n
the subtraction of the third bytes of each operand, in the third byte of the return value.\n
the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
\remark
res[7:0] = val1[7:0] - val2[7:0] \n
res[15:8] = val1[15:8] - val2[15:8] \n
res[23:16] = val1[23:16] - val2[23:16] \n
res[31:24] = val1[31:24] - val2[31:24]
*/
__ALWAYS_INLINE uint32_t __SSUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = ((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
s = ((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
t = ((((int32_t)x << 8) >> 24) - (((int32_t)y << 8) >> 24)) & (int32_t)0x000000FF;
u = ((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned subtract.
\details This function enables you to perform four 8-bit unsigned integer subtractions.
\param [in] x first four 8-bit operands of each subtraction.
\param [in] y second four 8-bit operands of each subtraction.
\return the subtraction of the first bytes from each operand, in the first byte of the return value.\n
the subtraction of the second bytes of each operand, in the second byte of the return value.\n
the subtraction of the third bytes of each operand, in the third byte of the return value.\n
the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
\remark
res[7:0] = val1[7:0] - val2[7:0] \n
res[15:8] = val1[15:8] - val2[15:8] \n
res[23:16] = val1[23:16] - val2[23:16] \n
res[31:24] = val1[31:24] - val2[31:24]
*/
__ALWAYS_INLINE uint32_t __USUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
t = (((x << 8) >> 24) - ((y << 8) >> 24)) & 0x000000FF;
u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Unsigned sum of quad 8-bit unsigned absolute difference.
\details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
of the differences together, returning the result as a single unsigned integer.
\param [in] x first four 8-bit operands of each subtraction.
\param [in] y second four 8-bit operands of each subtraction.
\return the subtraction of the first bytes from each operand, in the first byte of the return value.\n
the subtraction of the second bytes of each operand, in the second byte of the return value.\n
the subtraction of the third bytes of each operand, in the third byte of the return value.\n
the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.\n
The sum is returned as a single unsigned integer.
\remark
absdiff1 = val1[7:0] - val2[7:0] \n
absdiff2 = val1[15:8] - val2[15:8] \n
absdiff3 = val1[23:16] - val2[23:16] \n
absdiff4 = val1[31:24] - val2[31:24] \n
res[31:0] = absdiff1 + absdiff2 + absdiff3 + absdiff4
*/
__ALWAYS_INLINE uint32_t __USAD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
t = (((x << 8) >> 24) - ((y << 8) >> 24)) & 0x000000FF;
u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;
return (u + t + s + r);
}
/**
\brief Unsigned sum of quad 8-bit unsigned absolute difference with 32-bit accumulate.
\details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
of the differences to a 32-bit accumulate operand.
\param [in] x first four 8-bit operands of each subtraction.
\param [in] y second four 8-bit operands of each subtraction.
\param [in] sum accumulation value.
\return the sum of the absolute differences of the following bytes, added to the accumulation value:
the subtraction of the first bytes from each operand, in the first byte of the return value.\n
the subtraction of the second bytes of each operand, in the second byte of the return value.\n
the subtraction of the third bytes of each operand, in the third byte of the return value.\n
the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
\remark
absdiff1 = val1[7:0] - val2[7:0] \n
absdiff2 = val1[15:8] - val2[15:8] \n
absdiff3 = val1[23:16] - val2[23:16] \n
absdiff4 = val1[31:24] - val2[31:24] \n
sum = absdiff1 + absdiff2 + absdiff3 + absdiff4 \n
res[31:0] = sum[31:0] + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __USADA8(uint32_t x, uint32_t y, uint32_t sum)
{
int32_t r, s, t, u;
r = (abs(((x << 24) >> 24) - ((y << 24) >> 24))) & 0x000000FF;
s = (abs(((x << 16) >> 24) - ((y << 16) >> 24))) & 0x000000FF;
t = (abs(((x << 8) >> 24) - ((y << 8) >> 24))) & 0x000000FF;
u = (abs(((x) >> 24) - ((y) >> 24))) & 0x000000FF;
return (u + t + s + r + sum);
}
/**
\brief Dual 16-bit saturating addition.
\details This function enables you to perform two 16-bit integer arithmetic additions in parallel,
saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the saturated addition of the low halfwords, in the low halfword of the return value.\n
the saturated addition of the high halfwords, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\remark
res[15:0] = val1[15:0] + val2[15:0] \n
res[31:16] = val1[31:16] + val2[31:16]
*/
__ALWAYS_INLINE uint32_t __QADD16(uint32_t x, uint32_t y)
{
int32_t r = 0, s = 0;
r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned saturating addition.
\details This function enables you to perform two unsigned 16-bit integer additions, saturating
the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the saturated addition of the low halfwords, in the low halfword of the return value.\n
the saturated addition of the high halfwords, in the high halfword of the return value.\n
The results are saturated to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
\remark
res[15:0] = val1[15:0] + val2[15:0] \n
res[31:16] = val1[31:16] + val2[31:16]
*/
__ALWAYS_INLINE uint32_t __UQADD16(uint32_t x, uint32_t y)
{
int32_t r = 0, s = 0;
r = __IUSAT((((x << 16) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;
s = __IUSAT((((x) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed addition.
\details This function enables you to perform two 16-bit signed integer additions.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the addition of the low halfwords in the low halfword of the return value.\n
the addition of the high halfwords in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] + val2[15:0] \n
res[31:16] = val1[31:16] + val2[31:16]
*/
__ALWAYS_INLINE uint32_t __SADD16(uint32_t x, uint32_t y)
{
int32_t r = 0, s = 0;
r = ((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
s = ((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned addition
\details This function enables you to perform two 16-bit unsigned integer additions.
\param [in] x first two 16-bit summands for each addition.
\param [in] y second two 16-bit summands for each addition.
\return the addition of the low halfwords in the low halfword of the return value.\n
the addition of the high halfwords in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] + val2[15:0] \n
res[31:16] = val1[31:16] + val2[31:16]
*/
__ALWAYS_INLINE uint32_t __UADD16(uint32_t x, uint32_t y)
{
int32_t r = 0, s = 0;
r = (((x << 16) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;
s = (((x) >> 16) + ((y) >> 16)) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed addition with halved results.
\details This function enables you to perform two signed 16-bit integer additions, halving the results.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the halved addition of the low halfwords, in the low halfword of the return value.\n
the halved addition of the high halfwords, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] + val2[15:0]) >> 1 \n
res[31:16] = (val1[31:16] + val2[31:16]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHADD16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned addition with halved results.
\details This function enables you to perform two unsigned 16-bit integer additions, halving the results.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the halved addition of the low halfwords, in the low halfword of the return value.\n
the halved addition of the high halfwords, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] + val2[15:0]) >> 1 \n
res[31:16] = (val1[31:16] + val2[31:16]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHADD16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((x << 16) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
s = ((((x) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Quad 8-bit signed addition with halved results.
\details This function enables you to perform four signed 8-bit integer additions, halving the results.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the halved addition of the first bytes from each operand, in the first byte of the return value.\n
the halved addition of the second bytes from each operand, in the second byte of the return value.\n
the halved addition of the third bytes from each operand, in the third byte of the return value.\n
the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
\remark
res[7:0] = (val1[7:0] + val2[7:0] ) >> 1 \n
res[15:8] = (val1[15:8] + val2[15:8] ) >> 1 \n
res[23:16] = (val1[23:16] + val2[23:16]) >> 1 \n
res[31:24] = (val1[31:24] + val2[31:24]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = (((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
s = (((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
t = (((((int32_t)x << 8) >> 24) + (((int32_t)y << 8) >> 24)) >> 1) & (int32_t)0x000000FF;
u = (((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned addition with halved results.
\details This function enables you to perform four unsigned 8-bit integer additions, halving the results.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the halved addition of the first bytes from each operand, in the first byte of the return value.\n
the halved addition of the second bytes from each operand, in the second byte of the return value.\n
the halved addition of the third bytes from each operand, in the third byte of the return value.\n
the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
\remark
res[7:0] = (val1[7:0] + val2[7:0] ) >> 1 \n
res[15:8] = (val1[15:8] + val2[15:8] ) >> 1 \n
res[23:16] = (val1[23:16] + val2[23:16]) >> 1 \n
res[31:24] = (val1[31:24] + val2[31:24]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHADD8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = ((((x << 24) >> 24) + ((y << 24) >> 24)) >> 1) & 0x000000FF;
s = ((((x << 16) >> 24) + ((y << 16) >> 24)) >> 1) & 0x000000FF;
t = ((((x << 8) >> 24) + ((y << 8) >> 24)) >> 1) & 0x000000FF;
u = ((((x) >> 24) + ((y) >> 24)) >> 1) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Dual 16-bit saturating subtract.
\details This function enables you to perform two 16-bit integer subtractions in parallel,
saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\remark
res[15:0] = val1[15:0] - val2[15:0] \n
res[31:16] = val1[31:16] - val2[31:16]
*/
__ALWAYS_INLINE uint32_t __QSUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned saturating subtraction.
\details This function enables you to perform two unsigned 16-bit integer subtractions,
saturating the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
\param [in] x first two 16-bit operands for each subtraction.
\param [in] y second two 16-bit operands for each subtraction.
\return the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\remark
res[15:0] = val1[15:0] - val2[15:0] \n
res[31:16] = val1[31:16] - val2[31:16]
*/
__ALWAYS_INLINE uint32_t __UQSUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __IUSAT((((x << 16) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;
s = __IUSAT((((x) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed subtraction.
\details This function enables you to perform two 16-bit signed integer subtractions.
\param [in] x first two 16-bit operands of each subtraction.
\param [in] y second two 16-bit operands of each subtraction.
\return the subtraction of the low halfword in the second operand from the low
halfword in the first operand, in the low halfword of the return value. \n
the subtraction of the high halfword in the second operand from the high
halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] - val2[15:0] \n
res[31:16] = val1[31:16] - val2[31:16]
*/
__ALWAYS_INLINE uint32_t __SSUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
s = ((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned subtract.
\details This function enables you to perform two 16-bit unsigned integer subtractions.
\param [in] x first two 16-bit operands of each subtraction.
\param [in] y second two 16-bit operands of each subtraction.
\return the subtraction of the low halfword in the second operand from the low
halfword in the first operand, in the low halfword of the return value. \n
the subtraction of the high halfword in the second operand from the high
halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] - val2[15:0] \n
res[31:16] = val1[31:16] - val2[31:16]
*/
__ALWAYS_INLINE uint32_t __USUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((x << 16) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;
s = (((x) >> 16) - ((y) >> 16)) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed subtraction with halved results.
\details This function enables you to perform two signed 16-bit integer subtractions, halving the results.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the halved subtraction of the low halfwords, in the low halfword of the return value.\n
the halved subtraction of the high halfwords, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] - val2[15:0]) >> 1 \n
res[31:16] = (val1[31:16] - val2[31:16]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHSUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned subtraction with halved results.
\details This function enables you to perform two unsigned 16-bit integer subtractions, halving the results.
\param [in] x first two 16-bit summands.
\param [in] y second two 16-bit summands.
\return the halved subtraction of the low halfwords, in the low halfword of the return value.\n
the halved subtraction of the high halfwords, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] - val2[15:0]) >> 1 \n
res[31:16] = (val1[31:16] - val2[31:16]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHSUB16(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((x << 16) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
s = ((((x) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Quad 8-bit signed addition with halved results.
\details This function enables you to perform four signed 8-bit integer subtractions, halving the results.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
\remark
res[7:0] = (val1[7:0] - val2[7:0] ) >> 1 \n
res[15:8] = (val1[15:8] - val2[15:8] ) >> 1 \n
res[23:16] = (val1[23:16] - val2[23:16]) >> 1 \n
res[31:24] = (val1[31:24] - val2[31:24]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHSUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = (((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
s = (((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
t = (((((int32_t)x << 8) >> 24) - (((int32_t)y << 8) >> 24)) >> 1) & (int32_t)0x000000FF;
u = (((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r)));
}
/**
\brief Quad 8-bit unsigned subtraction with halved results.
\details This function enables you to perform four unsigned 8-bit integer subtractions, halving the results.
\param [in] x first four 8-bit summands.
\param [in] y second four 8-bit summands.
\return the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
\remark
res[7:0] = (val1[7:0] - val2[7:0] ) >> 1 \n
res[15:8] = (val1[15:8] - val2[15:8] ) >> 1 \n
res[23:16] = (val1[23:16] - val2[23:16]) >> 1 \n
res[31:24] = (val1[31:24] - val2[31:24]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHSUB8(uint32_t x, uint32_t y)
{
int32_t r, s, t, u;
r = ((((x << 24) >> 24) - ((y << 24) >> 24)) >> 1) & 0x000000FF;
s = ((((x << 16) >> 24) - ((y << 16) >> 24)) >> 1) & 0x000000FF;
t = ((((x << 8) >> 24) - ((y << 8) >> 24)) >> 1) & 0x000000FF;
u = ((((x) >> 24) - ((y) >> 24)) >> 1) & 0x000000FF;
return ((u << 24) | (t << 16) | (s << 8) | (r));
}
/**
\brief Dual 16-bit add and subtract with exchange.
\details This function enables you to exchange the halfwords of the one operand,
then add the high halfwords and subtract the low halfwords,
saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\param [in] x first operand for the subtraction in the low halfword,
and the first operand for the addition in the high halfword.
\param [in] y second operand for the subtraction in the high halfword,
and the second operand for the addition in the low halfword.
\return the saturated subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the saturated addition of the high halfword in the first operand and the
low halfword in the second operand, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\remark
res[15:0] = val1[15:0] - val2[31:16] \n
res[31:16] = val1[31:16] + val2[15:0]
*/
__ALWAYS_INLINE uint32_t __QASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned saturating addition and subtraction with exchange.
\details This function enables you to exchange the halfwords of the second operand and
perform one unsigned 16-bit integer addition and one unsigned 16-bit subtraction,
saturating the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
\param [in] x first operand for the subtraction in the low halfword,
and the first operand for the addition in the high halfword.
\param [in] y second operand for the subtraction in the high halfword,
and the second operand for the addition in the low halfword.
\return the saturated subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the saturated addition of the high halfword in the first operand and the
low halfword in the second operand, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
\remark
res[15:0] = val1[15:0] - val2[31:16] \n
res[31:16] = val1[31:16] + val2[15:0]
*/
__ALWAYS_INLINE uint32_t __UQASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __IUSAT((((x << 16) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;
s = __IUSAT((((x) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit addition and subtraction with exchange.
\details It enables you to exchange the halfwords of the second operand, add the high halfwords
and subtract the low halfwords.
\param [in] x first operand for the subtraction in the low halfword,
and the first operand for the addition in the high halfword.
\param [in] y second operand for the subtraction in the high halfword,
and the second operand for the addition in the low halfword.
\return the subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the addition of the high halfword in the first operand and the
low halfword in the second operand, in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] - val2[31:16] \n
res[31:16] = val1[31:16] + val2[15:0]
*/
__ALWAYS_INLINE uint32_t __SASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
s = ((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned addition and subtraction with exchange.
\details This function enables you to exchange the two halfwords of the second operand,
add the high halfwords and subtract the low halfwords.
\param [in] x first operand for the subtraction in the low halfword,
and the first operand for the addition in the high halfword.
\param [in] y second operand for the subtraction in the high halfword,
and the second operand for the addition in the low halfword.
\return the subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the addition of the high halfword in the first operand and the
low halfword in the second operand, in the high halfword of the return value.
\remark
res[15:0] = val1[15:0] - val2[31:16] \n
res[31:16] = val1[31:16] + val2[15:0]
*/
__ALWAYS_INLINE uint32_t __UASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((x << 16) >> 16) - ((y) >> 16)) & 0x0000FFFF;
s = (((x) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed addition and subtraction with halved results.
\details This function enables you to exchange the two halfwords of one operand, perform one
signed 16-bit integer addition and one signed 16-bit subtraction, and halve the results.
\param [in] x first 16-bit operands.
\param [in] y second 16-bit operands.
\return the halved subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the halved addition of the low halfword in the second operand from the high
halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] - val2[31:16]) >> 1 \n
res[31:16] = (val1[31:16] + val2[15:0]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned addition and subtraction with halved results and exchange.
\details This function enables you to exchange the halfwords of the second operand,
add the high halfwords and subtract the low halfwords, halving the results.
\param [in] x first operand for the subtraction in the low halfword, and
the first operand for the addition in the high halfword.
\param [in] y second operand for the subtraction in the high halfword, and
the second operand for the addition in the low halfword.
\return the halved subtraction of the high halfword in the second operand from the
low halfword in the first operand, in the low halfword of the return value.\n
the halved addition of the low halfword in the second operand from the high
halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] - val2[31:16]) >> 1 \n
res[31:16] = (val1[31:16] + val2[15:0]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHASX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((x << 16) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;
s = ((((x) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit subtract and add with exchange.
\details This function enables you to exchange the halfwords of one operand,
then subtract the high halfwords and add the low halfwords,
saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\param [in] x first operand for the addition in the low halfword,
and the first operand for the subtraction in the high halfword.
\param [in] y second operand for the addition in the high halfword,
and the second operand for the subtraction in the low halfword.
\return the saturated addition of the low halfword of the first operand and the high
halfword of the second operand, in the low halfword of the return value.\n
the saturated subtraction of the low halfword of the second operand from the
high halfword of the first operand, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
\remark
res[15:0] = val1[15:0] + val2[31:16] \n
res[31:16] = val1[31:16] - val2[15:0]
*/
__ALWAYS_INLINE uint32_t __QSAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned saturating subtraction and addition with exchange.
\details This function enables you to exchange the halfwords of the second operand and perform
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturating
the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
\param [in] x first operand for the addition in the low halfword,
and the first operand for the subtraction in the high halfword.
\param [in] y second operand for the addition in the high halfword,
and the second operand for the subtraction in the low halfword.
\return the saturated addition of the low halfword of the first operand and the high
halfword of the second operand, in the low halfword of the return value.\n
the saturated subtraction of the low halfword of the second operand from the
high halfword of the first operand, in the high halfword of the return value.\n
The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
\remark
res[15:0] = val1[15:0] + val2[31:16] \n
res[31:16] = val1[31:16] - val2[15:0]
*/
__ALWAYS_INLINE uint32_t __UQSAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = __IUSAT((((x << 16) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;
s = __IUSAT((((x) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit unsigned subtract and add with exchange.
\details This function enables you to exchange the halfwords of the second operand,
subtract the high halfwords and add the low halfwords.
\param [in] x first operand for the addition in the low halfword,
and the first operand for the subtraction in the high halfword.
\param [in] y second operand for the addition in the high halfword,
and the second operand for the subtraction in the low halfword.
\return the addition of the low halfword of the first operand and the high
halfword of the second operand, in the low halfword of the return value.\n
the subtraction of the low halfword of the second operand from the
high halfword of the first operand, in the high halfword of the return value.\n
\remark
res[15:0] = val1[15:0] + val2[31:16] \n
res[31:16] = val1[31:16] - val2[15:0]
*/
__ALWAYS_INLINE uint32_t __USAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((x << 16) >> 16) + ((y) >> 16)) & 0x0000FFFF;
s = (((x) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed subtraction and addition with exchange.
\details This function enables you to exchange the two halfwords of one operand and perform one
16-bit integer subtraction and one 16-bit addition.
\param [in] x first operand for the addition in the low halfword, and the first operand
for the subtraction in the high halfword.
\param [in] y second operand for the addition in the high halfword, and the second
operand for the subtraction in the low halfword.
\return the addition of the low halfword of the first operand and the high
halfword of the second operand, in the low halfword of the return value.\n
the subtraction of the low halfword of the second operand from the
high halfword of the first operand, in the high halfword of the return value.\n
\remark
res[15:0] = val1[15:0] + val2[31:16] \n
res[31:16] = val1[31:16] - val2[15:0]
*/
__ALWAYS_INLINE uint32_t __SSAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
s = ((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit signed subtraction and addition with halved results.
\details This function enables you to exchange the two halfwords of one operand, perform one signed
16-bit integer subtraction and one signed 16-bit addition, and halve the results.
\param [in] x first 16-bit operands.
\param [in] y second 16-bit operands.
\return the halved addition of the low halfword in the first operand and the
high halfword in the second operand, in the low halfword of the return value.\n
the halved subtraction of the low halfword in the second operand from the
high halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] + val2[31:16]) >> 1 \n
res[31:16] = (val1[31:16] - val2[15:0]) >> 1
*/
__ALWAYS_INLINE uint32_t __SHSAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = (((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
s = (((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
return ((uint32_t)((s << 16) | (r)));
}
/**
\brief Dual 16-bit unsigned subtraction and addition with halved results and exchange.
\details This function enables you to exchange the halfwords of the second operand,
subtract the high halfwords and add the low halfwords, halving the results.
\param [in] x first operand for the addition in the low halfword, and
the first operand for the subtraction in the high halfword.
\param [in] y second operand for the addition in the high halfword, and
the second operand for the subtraction in the low halfword.
\return the halved addition of the low halfword in the first operand and the
high halfword in the second operand, in the low halfword of the return value.\n
the halved subtraction of the low halfword in the second operand from the
high halfword in the first operand, in the high halfword of the return value.
\remark
res[15:0] = (val1[15:0] + val2[31:16]) >> 1 \n
res[31:16] = (val1[31:16] - val2[15:0]) >> 1
*/
__ALWAYS_INLINE uint32_t __UHSAX(uint32_t x, uint32_t y)
{
int32_t r, s;
r = ((((x << 16) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;
s = ((((x) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
return ((s << 16) | (r));
}
/**
\brief Dual 16-bit signed multiply with exchange returning difference.
\details This function enables you to perform two 16-bit signed multiplications, subtracting
one of the products from the other. The halfwords of the second operand are exchanged
before performing the arithmetic. This produces top * bottom and bottom * top multiplication.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\return the difference of the products of the two 16-bit signed multiplications.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
res[31:0] = p1 - p2
*/
__ALWAYS_INLINE uint32_t __SMUSDX(uint32_t x, uint32_t y)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}
/**
\brief Sum of dual 16-bit signed multiply with exchange.
\details This function enables you to perform two 16-bit signed multiplications with exchanged
halfwords of the second operand, adding the products together.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\return the sum of the products of the two 16-bit signed multiplications with exchanged halfwords of the second operand.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
res[31:0] = p1 + p2
*/
__ALWAYS_INLINE uint32_t __SMUADX(uint32_t x, uint32_t y)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}
/**
\brief Saturating add.
\details This function enables you to obtain the saturating add of two integers.
\param [in] x first summand of the saturating add operation.
\param [in] y second summand of the saturating add operation.
\return the saturating addition of val1 and val2.
\remark
res[31:0] = SAT(val1 + SAT(val2))
*/
__ALWAYS_INLINE int32_t __QADD(int32_t x, int32_t y)
{
int32_t result;
if (y >= 0)
{
if (x + y >= x)
{
result = x + y;
}
else
{
result = 0x7FFFFFFF;
}
}
else
{
if (x + y < x)
{
result = x + y;
}
else
{
result = 0x80000000;
}
}
return result;
}
/**
\brief Saturating subtract.
\details This function enables you to obtain the saturating add of two integers.
\param [in] x first summand of the saturating add operation.
\param [in] y second summand of the saturating add operation.
\return the saturating addition of val1 and val2.
\remark
res[31:0] = SAT(val1 + SAT(val2))
*/
__ALWAYS_INLINE int32_t __QSUB(int32_t x, int32_t y)
{
int64_t tmp;
int32_t result;
tmp = (int64_t)x - (int64_t)y;
if (tmp > 0x7fffffff)
{
tmp = 0x7fffffff;
}
else if (tmp < (-2147483647 - 1))
{
tmp = -2147483647 - 1;
}
result = tmp;
return result;
}
/**
\brief Dual 16-bit signed multiply with single 32-bit accumulator.
\details This function enables you to perform two signed 16-bit multiplications,
adding both results to a 32-bit accumulate operand.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the product of each multiplication added to the accumulate value, as a 32-bit integer.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
res[31:0] = p1 + p2 + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __SMLAD(uint32_t x, uint32_t y, uint32_t sum)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
(((int32_t)sum))));
}
/**
\brief Pre-exchanged dual 16-bit signed multiply with single 32-bit accumulator.
\details This function enables you to perform two signed 16-bit multiplications with exchanged
halfwords of the second operand, adding both results to a 32-bit accumulate operand.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the product of each multiplication with exchanged halfwords of the second
operand added to the accumulate value, as a 32-bit integer.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
res[31:0] = p1 + p2 + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __SMLADX(uint32_t x, uint32_t y, uint32_t sum)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
(((int32_t)sum))));
}
/**
\brief Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
\details This function enables you to perform two 16-bit signed multiplications, take the
difference of the products, subtracting the high halfword product from the low
halfword product, and add the difference to a 32-bit accumulate operand.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the difference of the product of each multiplication, added to the accumulate value.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
res[31:0] = p1 - p2 + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __SMLSD(uint32_t x, uint32_t y, uint32_t sum)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
(((int32_t)sum))));
}
/**
\brief Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
\details This function enables you to exchange the halfwords in the second operand, then perform two 16-bit
signed multiplications. The difference of the products is added to a 32-bit accumulate operand.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the difference of the product of each multiplication, added to the accumulate value.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
res[31:0] = p1 - p2 + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __SMLSDX(uint32_t x, uint32_t y, uint32_t sum)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
(((int32_t)sum))));
}
/**
\brief Dual 16-bit signed multiply with single 64-bit accumulator.
\details This function enables you to perform two signed 16-bit multiplications, adding both results
to a 64-bit accumulate operand. Overflow is only possible as a result of the 64-bit addition.
This overflow is not detected if it occurs. Instead, the result wraps around modulo2^64.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the product of each multiplication added to the accumulate value.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
sum = p1 + p2 + val3[63:32][31:0] \n
res[63:32] = sum[63:32] \n
res[31:0] = sum[31:0]
*/
__ALWAYS_INLINE uint64_t __SMLALD(uint32_t x, uint32_t y, uint64_t sum)
{
return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
(((uint64_t)sum))));
}
/**
\brief Dual 16-bit signed multiply with exchange with single 64-bit accumulator.
\details This function enables you to exchange the halfwords of the second operand, and perform two
signed 16-bit multiplications, adding both results to a 64-bit accumulate operand. Overflow
is only possible as a result of the 64-bit addition. This overflow is not detected if it occurs.
Instead, the result wraps around modulo2^64.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the product of each multiplication added to the accumulate value.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
sum = p1 + p2 + val3[63:32][31:0] \n
res[63:32] = sum[63:32] \n
res[31:0] = sum[31:0]
*/
__ALWAYS_INLINE uint64_t __SMLALDX(uint32_t x, uint32_t y, uint64_t sum)
{
return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
(((uint64_t)sum))));
}
/**
\brief dual 16-bit signed multiply subtract with 64-bit accumulate.
\details This function It enables you to perform two 16-bit signed multiplications, take the difference
of the products, subtracting the high halfword product from the low halfword product, and add the
difference to a 64-bit accumulate operand. Overflow cannot occur during the multiplications or the
subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow is not
detected. Instead, the result wraps round to modulo2^64.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the difference of the product of each multiplication, added to the accumulate value.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
res[63:0] = p1 - p2 + val3[63:0]
*/
__ALWAYS_INLINE uint64_t __SMLSLD(uint32_t x, uint32_t y, uint64_t sum)
{
return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
(((uint64_t)sum))));
}
/**
\brief Dual 16-bit signed multiply with exchange subtract with 64-bit accumulate.
\details This function enables you to exchange the halfwords of the second operand, perform two 16-bit multiplications,
adding the difference of the products to a 64-bit accumulate operand. Overflow cannot occur during the
multiplications or the subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow
is not detected. Instead, the result wraps round to modulo2^64.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\param [in] sum accumulate value.
\return the difference of the product of each multiplication, added to the accumulate value.
\remark
p1 = val1[15:0] * val2[31:16] \n
p2 = val1[31:16] * val2[15:0] \n
res[63:0] = p1 - p2 + val3[63:0]
*/
__ALWAYS_INLINE uint64_t __SMLSLDX(uint32_t x, uint32_t y, uint64_t sum)
{
return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
(((uint64_t)sum))));
}
/**
\brief 32-bit signed multiply with 32-bit truncated accumulator.
\details This function enables you to perform a signed 32-bit multiplications, adding the most
significant 32 bits of the 64-bit result to a 32-bit accumulate operand.
\param [in] x first operand for multiplication.
\param [in] y second operand for multiplication.
\param [in] sum accumulate value.
\return the product of multiplication (most significant 32 bits) is added to the accumulate value, as a 32-bit integer.
\remark
p = val1 * val2 \n
res[31:0] = p[61:32] + val3[31:0]
*/
__ALWAYS_INLINE uint32_t __SMMLA(int32_t x, int32_t y, int32_t sum)
{
return (uint32_t)((int32_t)((int64_t)((int64_t)x * (int64_t)y) >> 32) + sum);
}
/**
\brief Sum of dual 16-bit signed multiply.
\details This function enables you to perform two 16-bit signed multiplications, adding the products together.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\return the sum of the products of the two 16-bit signed multiplications.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
res[31:0] = p1 + p2
*/
__ALWAYS_INLINE uint32_t __SMUAD(uint32_t x, uint32_t y)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}
/**
\brief Dual 16-bit signed multiply returning difference.
\details This function enables you to perform two 16-bit signed multiplications, taking the difference
of the products by subtracting the high halfword product from the low halfword product.
\param [in] x first 16-bit operands for each multiplication.
\param [in] y second 16-bit operands for each multiplication.
\return the difference of the products of the two 16-bit signed multiplications.
\remark
p1 = val1[15:0] * val2[15:0] \n
p2 = val1[31:16] * val2[31:16] \n
res[31:0] = p1 - p2
*/
__ALWAYS_INLINE uint32_t __SMUSD(uint32_t x, uint32_t y)
{
return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}
/**
\brief Dual extracted 8-bit to 16-bit signed addition.
\details This function enables you to extract two 8-bit values from the second operand (at bit positions
[7:0] and [23:16]), sign-extend them to 16-bits each, and add the results to the first operand.
\param [in] x values added to the sign-extended to 16-bit values.
\param [in] y two 8-bit values to be extracted and sign-extended.
\return the addition of val1 and val2, where the 8-bit values in val2[7:0] and
val2[23:16] have been extracted and sign-extended prior to the addition.
\remark
res[15:0] = val1[15:0] + SignExtended(val2[7:0]) \n
res[31:16] = val1[31:16] + SignExtended(val2[23:16])
*/
__ALWAYS_INLINE uint32_t __SXTAB16(uint32_t x, uint32_t y)
{
return ((uint32_t)((((((int32_t)y << 24) >> 24) + (((int32_t)x << 16) >> 16)) & (int32_t)0x0000FFFF) |
(((((int32_t)y << 8) >> 8) + (((int32_t)x >> 16) << 16)) & (int32_t)0xFFFF0000)));
}
/**
\brief Extracted 16-bit to 32-bit unsigned addition.
\details This function enables you to extract two 8-bit values from one operand, zero-extend
them to 16 bits each, and add the results to two 16-bit values from another operand.
\param [in] x values added to the zero-extended to 16-bit values.
\param [in] y two 8-bit values to be extracted and zero-extended.
\return the addition of val1 and val2, where the 8-bit values in val2[7:0] and
val2[23:16] have been extracted and zero-extended prior to the addition.
\remark
res[15:0] = ZeroExt(val2[7:0] to 16 bits) + val1[15:0] \n
res[31:16] = ZeroExt(val2[31:16] to 16 bits) + val1[31:16]
*/
__ALWAYS_INLINE uint32_t __UXTAB16(uint32_t x, uint32_t y)
{
return ((uint32_t)(((((y << 24) >> 24) + ((x << 16) >> 16)) & 0x0000FFFF) |
((((y << 8) >> 8) + ((x >> 16) << 16)) & 0xFFFF0000)));
}
/**
\brief Dual extract 8-bits and sign extend each to 16-bits.
\details This function enables you to extract two 8-bit values from an operand and sign-extend them to 16 bits each.
\param [in] x two 8-bit values in val[7:0] and val[23:16] to be sign-extended.
\return the 8-bit values sign-extended to 16-bit values.\n
sign-extended value of val[7:0] in the low halfword of the return value.\n
sign-extended value of val[23:16] in the high halfword of the return value.
\remark
res[15:0] = SignExtended(val[7:0]) \n
res[31:16] = SignExtended(val[23:16])
*/
__ALWAYS_INLINE uint32_t __SXTB16(uint32_t x)
{
return ((uint32_t)(((((int32_t)x << 24) >> 24) & (int32_t)0x0000FFFF) |
((((int32_t)x << 8) >> 8) & (int32_t)0xFFFF0000)));
}
/**
\brief Dual extract 8-bits and zero-extend to 16-bits.
\details This function enables you to extract two 8-bit values from an operand and zero-extend them to 16 bits each.
\param [in] x two 8-bit values in val[7:0] and val[23:16] to be zero-extended.
\return the 8-bit values sign-extended to 16-bit values.\n
sign-extended value of val[7:0] in the low halfword of the return value.\n
sign-extended value of val[23:16] in the high halfword of the return value.
\remark
res[15:0] = SignExtended(val[7:0]) \n
res[31:16] = SignExtended(val[23:16])
*/
__ALWAYS_INLINE uint32_t __UXTB16(uint32_t x)
{
return ((uint32_t)((((x << 24) >> 24) & 0x0000FFFF) |
(((x << 8) >> 8) & 0xFFFF0000)));
}
#endif /* _CSI_SIMD_H_ */