mem.c 23.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2008-7-12      Bernard      the first version
 * 2010-06-09     Bernard      fix the end stub of heap
 *                             fix memory check in rt_realloc function
 * 2010-07-13     Bernard      fix RT_ALIGN issue found by kuronca
 * 2010-10-14     Bernard      fix rt_realloc issue when realloc a NULL pointer.
 * 2017-07-14     armink       fix rt_realloc issue when new size is 0
 * 2018-10-02     Bernard      Add 64bit support
 */

/*
 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGE.
 *
 * This file is part of the lwIP TCP/IP stack.
 *
 * Author: Adam Dunkels <adam@sics.se>
 *         Simon Goldschmidt
 *
 */

#include <rthw.h>
#include <rtthread.h>

#if defined (RT_USING_SMALL_MEM)
 /**
  * memory item on the small mem
  */
struct rt_small_mem_item
{
    rt_ubase_t              pool_ptr;         /**< small memory object addr */
#ifdef ARCH_CPU_64BIT
    rt_uint32_t             resv;
#endif /* ARCH_CPU_64BIT */
    rt_size_t               next;             /**< next free item */
    rt_size_t               prev;             /**< prev free item */
#ifdef RT_USING_MEMTRACE
#ifdef ARCH_CPU_64BIT
    rt_uint8_t              thread[8];       /**< thread name */
#else
    rt_uint8_t              thread[4];       /**< thread name */
#endif /* ARCH_CPU_64BIT */
#endif /* RT_USING_MEMTRACE */
};

/**
 * Base structure of small memory object
 */
struct rt_small_mem
{
    struct rt_memory            parent;                 /**< inherit from rt_memory */
    rt_uint8_t                 *heap_ptr;               /**< pointer to the heap */
    struct rt_small_mem_item   *heap_end;
    struct rt_small_mem_item   *lfree;
    rt_size_t                   mem_size_aligned;       /**< aligned memory size */
};

#define HEAP_MAGIC 0x1ea0

#ifdef ARCH_CPU_64BIT
#define MIN_SIZE 24
#else
#define MIN_SIZE 12
#endif /* ARCH_CPU_64BIT */

#define MEM_MASK             0xfffffffe
#define MEM_USED()         ((((rt_base_t)(small_mem)) & MEM_MASK) | 0x1)
#define MEM_FREED()        ((((rt_base_t)(small_mem)) & MEM_MASK) | 0x0)
#define MEM_ISUSED(_mem)   \
                      (((rt_base_t)(((struct rt_small_mem_item *)(_mem))->pool_ptr)) & (~MEM_MASK))
#define MEM_POOL(_mem)     \
    ((struct rt_small_mem *)(((rt_base_t)(((struct rt_small_mem_item *)(_mem))->pool_ptr)) & (MEM_MASK)))
#define MEM_SIZE(_heap, _mem)      \
    (((struct rt_small_mem_item *)(_mem))->next - ((rt_ubase_t)(_mem) - \
    (rt_ubase_t)((_heap)->heap_ptr)) - RT_ALIGN(sizeof(struct rt_small_mem_item), RT_ALIGN_SIZE))

#define MIN_SIZE_ALIGNED     RT_ALIGN(MIN_SIZE, RT_ALIGN_SIZE)
#define SIZEOF_STRUCT_MEM    RT_ALIGN(sizeof(struct rt_small_mem_item), RT_ALIGN_SIZE)

#ifdef RT_USING_MEMTRACE
rt_inline void rt_smem_setname(struct rt_small_mem_item *mem, const char *name)
{
    int index;
    for (index = 0; index < sizeof(mem->thread); index ++)
    {
        if (name[index] == '\0') break;
        mem->thread[index] = name[index];
    }

    for (; index < sizeof(mem->thread); index ++)
    {
        mem->thread[index] = ' ';
    }
}
#endif /* RT_USING_MEMTRACE */

static void plug_holes(struct rt_small_mem *m, struct rt_small_mem_item *mem)
{
    struct rt_small_mem_item *nmem;
    struct rt_small_mem_item *pmem;

    RT_ASSERT((rt_uint8_t *)mem >= m->heap_ptr);
    RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)m->heap_end);

    /* plug hole forward */
    nmem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next];
    if (mem != nmem && !MEM_ISUSED(nmem) &&
        (rt_uint8_t *)nmem != (rt_uint8_t *)m->heap_end)
    {
        /* if mem->next is unused and not end of m->heap_ptr,
         * combine mem and mem->next
         */
        if (m->lfree == nmem)
        {
            m->lfree = mem;
        }
        nmem->pool_ptr = 0;
        mem->next = nmem->next;
        ((struct rt_small_mem_item *)&m->heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - m->heap_ptr;
    }

    /* plug hole backward */
    pmem = (struct rt_small_mem_item *)&m->heap_ptr[mem->prev];
    if (pmem != mem && !MEM_ISUSED(pmem))
    {
        /* if mem->prev is unused, combine mem and mem->prev */
        if (m->lfree == mem)
        {
            m->lfree = pmem;
        }
        mem->pool_ptr = 0;
        pmem->next = mem->next;
        ((struct rt_small_mem_item *)&m->heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - m->heap_ptr;
    }
}

/**
 * @brief This function will initialize small memory management algorithm.
 *
 * @param m the small memory management object.
 *
 * @param name is the name of the small memory management object.
 *
 * @param begin_addr the beginning address of memory.
 *
 * @param size is the size of the memory.
 *
 * @return Return a pointer to the memory object. When the return value is RT_NULL, it means the init failed.
 */
rt_smem_t rt_smem_init(const char    *name,
                     void          *begin_addr,
                     rt_size_t      size)
{
    struct rt_small_mem_item *mem;
    struct rt_small_mem *small_mem;
    rt_ubase_t start_addr, begin_align, end_align, mem_size;

    small_mem = (struct rt_small_mem *)RT_ALIGN((rt_ubase_t)begin_addr, RT_ALIGN_SIZE);
    start_addr = (rt_ubase_t)small_mem + sizeof(*small_mem);
    begin_align = RT_ALIGN((rt_ubase_t)start_addr, RT_ALIGN_SIZE);
    end_align   = RT_ALIGN_DOWN((rt_ubase_t)begin_addr + size, RT_ALIGN_SIZE);

    /* alignment addr */
    if ((end_align > (2 * SIZEOF_STRUCT_MEM)) &&
        ((end_align - 2 * SIZEOF_STRUCT_MEM) >= start_addr))
    {
        /* calculate the aligned memory size */
        mem_size = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM;
    }
    else
    {
        rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n",
                   (rt_ubase_t)begin_addr, (rt_ubase_t)begin_addr + size);

        return RT_NULL;
    }

    rt_memset(small_mem, 0, sizeof(*small_mem));
    /* initialize small memory object */
    rt_object_init(&(small_mem->parent.parent), RT_Object_Class_Memory, name);
    small_mem->parent.algorithm = "small";
    small_mem->parent.address = begin_align;
    small_mem->parent.total = mem_size;
    small_mem->mem_size_aligned = mem_size;

    /* point to begin address of heap */
    small_mem->heap_ptr = (rt_uint8_t *)begin_align;

    RT_DEBUG_LOG(RT_DEBUG_MEM, ("mem init, heap begin address 0x%x, size %d\n",
                                (rt_ubase_t)small_mem->heap_ptr, small_mem->mem_size_aligned));

    /* initialize the start of the heap */
    mem        = (struct rt_small_mem_item *)small_mem->heap_ptr;
    mem->pool_ptr = MEM_FREED();
    mem->next  = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
    mem->prev  = 0;
#ifdef RT_USING_MEMTRACE
    rt_smem_setname(mem, "INIT");
#endif /* RT_USING_MEMTRACE */

    /* initialize the end of the heap */
    small_mem->heap_end        = (struct rt_small_mem_item *)&small_mem->heap_ptr[mem->next];
    small_mem->heap_end->pool_ptr = MEM_USED();
    small_mem->heap_end->next  = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
    small_mem->heap_end->prev  = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
#ifdef RT_USING_MEMTRACE
    rt_smem_setname(small_mem->heap_end, "INIT");
#endif /* RT_USING_MEMTRACE */

    /* initialize the lowest-free pointer to the start of the heap */
    small_mem->lfree = (struct rt_small_mem_item *)small_mem->heap_ptr;

    return &small_mem->parent;
}
RTM_EXPORT(rt_smem_init);

/**
 * @brief This function will remove a small mem from the system.
 *
 * @param m the small memory management object.
 *
 * @return RT_EOK
 */
rt_err_t rt_smem_detach(rt_smem_t m)
{
    RT_ASSERT(m != RT_NULL);
    RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&m->parent));

    rt_object_detach(&(m->parent));

    return RT_EOK;
}
RTM_EXPORT(rt_smem_detach);

/**
 * @addtogroup MM
 */

/**@{*/

/**
 * @brief Allocate a block of memory with a minimum of 'size' bytes.
 *
 * @param m the small memory management object.
 *
 * @param size is the minimum size of the requested block in bytes.
 *
 * @return the pointer to allocated memory or NULL if no free memory was found.
 */
void *rt_smem_alloc(rt_smem_t m, rt_size_t size)
{
    rt_size_t ptr, ptr2;
    struct rt_small_mem_item *mem, *mem2;
    struct rt_small_mem *small_mem;

    if (size == 0)
        return RT_NULL;

    RT_ASSERT(m != RT_NULL);
    RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&m->parent));

    if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
                                    size, RT_ALIGN(size, RT_ALIGN_SIZE)));
    else
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));

    small_mem = (struct rt_small_mem *)m;
    /* alignment size */
    size = RT_ALIGN(size, RT_ALIGN_SIZE);

    if (size > small_mem->mem_size_aligned)
    {
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));

        return RT_NULL;
    }

    /* every data block must be at least MIN_SIZE_ALIGNED long */
    if (size < MIN_SIZE_ALIGNED)
        size = MIN_SIZE_ALIGNED;

    for (ptr = (rt_uint8_t *)small_mem->lfree - small_mem->heap_ptr;
         ptr <= small_mem->mem_size_aligned - size;
         ptr = ((struct rt_small_mem_item *)&small_mem->heap_ptr[ptr])->next)
    {
        mem = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr];

        if ((!MEM_ISUSED(mem)) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
        {
            /* mem is not used and at least perfect fit is possible:
             * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */

            if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
                (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
            {
                /* (in addition to the above, we test if another struct rt_small_mem_item (SIZEOF_STRUCT_MEM) containing
                 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
                 * -> split large block, create empty remainder,
                 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
                 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
                 * struct rt_small_mem_item would fit in but no data between mem2 and mem2->next
                 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
                 *       region that couldn't hold data, but when mem->next gets freed,
                 *       the 2 regions would be combined, resulting in more free memory
                 */
                ptr2 = ptr + SIZEOF_STRUCT_MEM + size;

                /* create mem2 struct */
                mem2       = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
                mem2->pool_ptr = MEM_FREED();
                mem2->next = mem->next;
                mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
                rt_smem_setname(mem2, "    ");
#endif /* RT_USING_MEMTRACE */

                /* and insert it between mem and mem->next */
                mem->next = ptr2;

                if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
                {
                    ((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
                }
                small_mem->parent.used += (size + SIZEOF_STRUCT_MEM);
                if (small_mem->parent.max < small_mem->parent.used)
                    small_mem->parent.max = small_mem->parent.used;
            }
            else
            {
                /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
                 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
                 * take care of this).
                 * -> near fit or excact fit: do not split, no mem2 creation
                 * also can't move mem->next directly behind mem, since mem->next
                 * will always be used at this point!
                 */
                small_mem->parent.used += mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr);
                if (small_mem->parent.max < small_mem->parent.used)
                    small_mem->parent.max = small_mem->parent.used;
            }
            /* set small memory object */
            mem->pool_ptr = MEM_USED();
#ifdef RT_USING_MEMTRACE
            if (rt_thread_self())
                rt_smem_setname(mem, rt_thread_self()->name);
            else
                rt_smem_setname(mem, "NONE");
#endif /* RT_USING_MEMTRACE */

            if (mem == small_mem->lfree)
            {
                /* Find next free block after mem and update lowest free pointer */
                while (MEM_ISUSED(small_mem->lfree) && small_mem->lfree != small_mem->heap_end)
                    small_mem->lfree = (struct rt_small_mem_item *)&small_mem->heap_ptr[small_mem->lfree->next];

                RT_ASSERT(((small_mem->lfree == small_mem->heap_end) || (!MEM_ISUSED(small_mem->lfree))));
            }
            RT_ASSERT((rt_ubase_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_ubase_t)small_mem->heap_end);
            RT_ASSERT((rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
            RT_ASSERT((((rt_ubase_t)mem) & (RT_ALIGN_SIZE - 1)) == 0);

            RT_DEBUG_LOG(RT_DEBUG_MEM,
                         ("allocate memory at 0x%x, size: %d\n",
                          (rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
                          (rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr))));

            /* return the memory data except mem struct */
            return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
        }
    }

    return RT_NULL;
}
RTM_EXPORT(rt_smem_alloc);

/**
 * @brief This function will change the size of previously allocated memory block.
 *
 * @param m the small memory management object.
 *
 * @param rmem is the pointer to memory allocated by rt_mem_alloc.
 *
 * @param newsize is the required new size.
 *
 * @return the changed memory block address.
 */
void *rt_smem_realloc(rt_smem_t m, void *rmem, rt_size_t newsize)
{
    rt_size_t size;
    rt_size_t ptr, ptr2;
    struct rt_small_mem_item *mem, *mem2;
    struct rt_small_mem *small_mem;
    void *nmem;

    RT_ASSERT(m != RT_NULL);
    RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&m->parent));

    small_mem = (struct rt_small_mem *)m;
    /* alignment size */
    newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
    if (newsize > small_mem->mem_size_aligned)
    {
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));

        return RT_NULL;
    }
    else if (newsize == 0)
    {
        rt_smem_free(rmem);
        return RT_NULL;
    }

    /* allocate a new memory block */
    if (rmem == RT_NULL)
        return rt_smem_alloc(&small_mem->parent, newsize);

    RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
    RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr);
    RT_ASSERT((rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);

    mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);

    /* current memory block size */
    ptr = (rt_uint8_t *)mem - small_mem->heap_ptr;
    size = mem->next - ptr - SIZEOF_STRUCT_MEM;
    if (size == newsize)
    {
        /* the size is the same as */
        return rmem;
    }

    if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
    {
        /* split memory block */
        small_mem->parent.used -= (size - newsize);

        ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
        mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
        mem2->pool_ptr = MEM_FREED();
        mem2->next = mem->next;
        mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
        rt_smem_setname(mem2, "    ");
#endif /* RT_USING_MEMTRACE */
        mem->next = ptr2;
        if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
        {
            ((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
        }

        if (mem2 < small_mem->lfree)
        {
            /* the splited struct is now the lowest */
            small_mem->lfree = mem2;
        }

        plug_holes(small_mem, mem2);

        return rmem;
    }

    /* expand memory */
    nmem = rt_smem_alloc(&small_mem->parent, newsize);
    if (nmem != RT_NULL) /* check memory */
    {
        rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
        rt_smem_free(rmem);
    }

    return nmem;
}
RTM_EXPORT(rt_smem_realloc);

/**
 * @brief This function will release the previously allocated memory block by
 *        rt_mem_alloc. The released memory block is taken back to system heap.
 *
 * @param rmem the address of memory which will be released.
 */
void rt_smem_free(void *rmem)
{
    struct rt_small_mem_item *mem;
    struct rt_small_mem *small_mem;

    if (rmem == RT_NULL)
        return;

    RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);

    /* Get the corresponding struct rt_small_mem_item ... */
    mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);

    RT_DEBUG_LOG(RT_DEBUG_MEM,
                 ("release memory 0x%x, size: %d\n",
                  (rt_ubase_t)rmem,
                  (rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr))));

    /* ... which has to be in a used state ... */
    small_mem = MEM_POOL(mem);
    RT_ASSERT(small_mem != RT_NULL);
    RT_ASSERT(MEM_ISUSED(mem));
    RT_ASSERT(rt_object_get_type(&small_mem->parent.parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&small_mem->parent.parent));
    RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr &&
              (rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);
    RT_ASSERT(MEM_POOL(&small_mem->heap_ptr[mem->next]) == small_mem);

    /* ... and is now unused. */
    mem->pool_ptr = MEM_FREED();
#ifdef RT_USING_MEMTRACE
    rt_smem_setname(mem, "    ");
#endif /* RT_USING_MEMTRACE */

    if (mem < small_mem->lfree)
    {
        /* the newly freed struct is now the lowest */
        small_mem->lfree = mem;
    }

    small_mem->parent.used -= (mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr));

    /* finally, see if prev or next are free also */
    plug_holes(small_mem, mem);
}
RTM_EXPORT(rt_smem_free);

#ifdef RT_USING_FINSH
#include <finsh.h>

#ifdef RT_USING_MEMTRACE
int memcheck(int argc, char *argv[])
{
    int position;
    rt_ubase_t level;
    struct rt_small_mem_item *mem;
    struct rt_small_mem *m;
    struct rt_object_information *information;
    struct rt_list_node *node;
    struct rt_object *object;
    char *name;

    name = argc > 1 ? argv[1] : RT_NULL;
    level = rt_hw_interrupt_disable();
    /* get mem object */
    information = rt_object_get_information(RT_Object_Class_Memory);
    for (node = information->object_list.next;
         node != &(information->object_list);
         node  = node->next)
    {
        object = rt_list_entry(node, struct rt_object, list);
        /* find the specified object */
        if (name != RT_NULL && rt_strncmp(name, object->name, RT_NAME_MAX) != 0)
            continue;
        /* mem object */
        m = (struct rt_small_mem *)object;
        /* check mem */
        for (mem = (struct rt_small_mem_item *)m->heap_ptr; mem != m->heap_end; mem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next])
        {
            position = (rt_ubase_t)mem - (rt_ubase_t)m->heap_ptr;
            if (position < 0) goto __exit;
            if (position > (int)m->mem_size_aligned) goto __exit;
            if (MEM_POOL(mem) != m) goto __exit;
        }
    }
    rt_hw_interrupt_enable(level);

    return 0;
__exit:
    rt_kprintf("Memory block wrong:\n");
    rt_kprintf("   name: %s\n", m->parent.parent.name);
    rt_kprintf("address: 0x%08x\n", mem);
    rt_kprintf("   pool: 0x%04x\n", mem->pool_ptr);
    rt_kprintf("   size: %d\n", mem->next - position - SIZEOF_STRUCT_MEM);
    rt_hw_interrupt_enable(level);

    return 0;
}
MSH_CMD_EXPORT(memcheck, check memory data);

int memtrace(int argc, char **argv)
{
    struct rt_small_mem_item *mem;
    struct rt_small_mem *m;
    struct rt_object_information *information;
    struct rt_list_node *node;
    struct rt_object *object;
    char *name;

    name = argc > 1 ? argv[1] : RT_NULL;
    /* get mem object */
    information = rt_object_get_information(RT_Object_Class_Memory);
    for (node = information->object_list.next;
         node != &(information->object_list);
         node  = node->next)
    {
        object = rt_list_entry(node, struct rt_object, list);
        /* find the specified object */
        if (name != RT_NULL && rt_strncmp(name, object->name, RT_NAME_MAX) != 0)
            continue;
        /* mem object */
        m = (struct rt_small_mem *)object;
        /* show memory information */
        rt_kprintf("\nmemory heap address:\n");
        rt_kprintf("name    : %s\n", m->parent.parent.name);
        rt_kprintf("total   : 0x%d\n", m->parent.total);
        rt_kprintf("used    : 0x%d\n", m->parent.used);
        rt_kprintf("max_used: 0x%d\n", m->parent.max);
        rt_kprintf("heap_ptr: 0x%08x\n", m->heap_ptr);
        rt_kprintf("lfree   : 0x%08x\n", m->lfree);
        rt_kprintf("heap_end: 0x%08x\n", m->heap_end);
        rt_kprintf("\n--memory item information --\n");
        for (mem = (struct rt_small_mem_item *)m->heap_ptr; mem != m->heap_end; mem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next])
        {
            int size = MEM_SIZE(m, mem);

            rt_kprintf("[0x%08x - ", mem);
            if (size < 1024)
                rt_kprintf("%5d", size);
            else if (size < 1024 * 1024)
                rt_kprintf("%4dK", size / 1024);
            else
                rt_kprintf("%4dM", size / (1024 * 1024));

            rt_kprintf("] %c%c%c%c", mem->thread[0], mem->thread[1], mem->thread[2], mem->thread[3]);
            if (MEM_POOL(mem) != m)
                rt_kprintf(": ***\n");
            else
                rt_kprintf("\n");
        }
    }
    return 0;
}
MSH_CMD_EXPORT(memtrace, dump memory trace information);
#endif /* RT_USING_MEMTRACE */
#endif /* RT_USING_FINSH */

#endif /* defined (RT_USING_SMALL_MEM) */

/**@}*/